126
Views
0
CrossRef citations to date
0
Altmetric
Drug Evaluation

Upamostat: a serine protease inhibitor for antiviral, gastrointestinal, and anticancer indications

, , &
Pages 1095-1103 | Received 24 May 2023, Accepted 13 Nov 2023, Published online: 23 Nov 2023

References

  • Owen CA. Serine Proteases, in Laurent GJ, Shapiro SD. Encyclopedia of respiratory medicine. Serine Proteases. Amsterdam: Elsevier; 2006. p. 1–10.
  • Carroll EL, Bailo M, Reihill JA, et al. Trypsin-like proteases and their role in muco-obstructive lung diseases. Int J Molec Sci. 2021;22(11):5817. doi: 10.3390/ijms22115817
  • Vergnolle N. Protease inhibition as new therapeutic strategy for GI diseases. Gut. 2016;65(7):1215–1224. doi: 10.1136/gutjnl-2015-309147
  • Pawar NR, Buzza MS, Antalis TM. Membrane-Anchored serine proteases and protease-activated receptor-2–Mediated signaling: co-conspirators in cancer Progression. Cancer Res. 2019;79(2):301–310. doi: 10.1158/0008-5472.CAN-18-1745
  • Han N, Jin K, He K, et al. Protease-activated receptors in cancer: a systematic review. Oncol Lett. 2011;2(4):599–608. doi: 10.3892/ol.2011.291
  • Jackson CB, Farzan M, Chen B, et al. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3–20. doi: 10.1038/s41580-021-00418-x
  • Steinmetzer T, Hardes K. The antiviral potential of host protease inhibitors . In: Bottcher F, editor. Activation of viruses by host proteases. New York: Springer International Publishing; 2018, p. 279–324.
  • Sturzebecher J, Prasa D, Hauptmann J, et al. Synthesis and Structure−Activity relationships of potent thrombin inhibitors: piperazides of 3-amidinophenylalanine. J Med Chem. 1997;40(19):3091–3099. doi: 10.1021/jm960668h
  • Sturzebecher J, Vieweg H, Steinmetzer T, et al. 3-amidinophenylalanine-based inhibitors of urokinase. Bioorg Med Chem Lett. 1999;9(21):3147–3152. doi: 10.1016/S0960-894X(99)00541-7
  • Ertongur S, Lang S, Mack B, et al. Inhibition of the invasion capacity of carcinoma cells by WX-UK1, a novel synthetic inhibitor of the urokinase-type plasminogen activator system. Int J Cancer. [2004 Jul 20];110(6):815–824. doi: 10.1002/ijc.20192
  • Setyono-Han B, Stürzebecher J, Schmalix WA et al. Suppression of rat breast cancer metastasis and reduction of primary tumor growth by the small synthetic urokinase inhibitor WX-UK1. Thromb Haemost. 2005 Apr;93(4):779–786. doi: 10.1160/TH04-11-0712
  • Oldenburg E, Schar CR, Lange EL, et al. New potential therapeutic applications of WX-UK1, as a specific and potent inhibitor of human trypsin-like proteases; American Association for Cancer Research; Chicago. Proc. AACR 2018, Abstract 784.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. doi: 10.1016/j.cell.2020.02.052
  • Plasse TF, Delgado B, Potts J, et al. Randomized, placebo-controlled pilot study of upamostat, a host-directed serine protease inhibitor, for outpatient treatment of COVID-19. Int J Inf Dis. 2023;128:148–156. doi: 10.1016/j.ijid.2022.12.003
  • Jiang Y, Yau M-K, Lim J, et al. A potent antagonist of protease-activated receptor 2 that inhibits multiple signaling functions in human cancer cells. J Pharmacol Exp Ther. 2018;364(2):246–257. doi: 10.1124/jpet.117.245027
  • Liu Y, Mueller BM. Protease-activated receptor-2 regulates vascular endothelial growth factor expression in MDA-MB-231 cells via MAPK pathways. Biochem Biophys Res Commun. 2006;344(4):1263–1270. doi: 10.1016/j.bbrc.2006.04.005
  • Matej R, Mandakova P, Metikova I, et al. Proteinase-activated receptor-2 expression in breast cancer and the role of trypsin on growth and metabolism of breast cancer cell line MDA MB-231. Physiol Res. 2007;56:475–484. doi: 10.33549/physiolres.930959
  • Su S, Li Y, Sheng Y, et al. Proteinase-activated receptor 2 expression in breast cancer and its role in breast cancer cell migration. Oncogene. 2009;28(34):3047–3057. doi: 10.1038/onc.2009.163
  • Han S, Lee CW, Trevino JG, et al. Autocrine extra-pancreatic trypsin 3 secretion promotes cell proliferation and survival in esophageal adenocarcinoma. PLoS One. 2013;8(10):e76667. doi: 10.1371/journal.pone.0076667
  • Sanchez-Hernandez PE, Ramirez-Duenas MG, Ablarran-Somoza B, et al. Protease-activated receptor-2 (PAR-2) in cervical cancer proliferation. Gynecol Oncol. 2008;108(1):19–26. doi: 10.1016/j.ygyno.2007.08.083
  • Li Y, Huang H, Chen X, et al. PAR2 promotes tumor-associated angiogenesis in lung adenocarcinoma through activating EGFR pathway. Tissue Cell. 2022;79:101918. doi: 10.1016/j.tice.2022.101918
  • Tsai C-C, Chou Y-T, Ha-W F. Protease-activated receptor 2 induces migration and promotes Slug-mediated epithelial-mesenchymal transition in lung adenocarcinoma cells. Biochim Biophys Acta, Mol Cell Res. 2019;1866(3):486–503. doi: 10.1016/j.bbamcr.2018.10.011
  • Kaufmann R, Hascher A, Mussbach F, et al. Proteinase-activated receptor 2 (PAR(2)) in cholangiocarcinoma (CCA) cells: effects on signaling and cellular level. Histochem Cell Biol. 2012;138(6):913–924. doi: 10.1007/s00418-012-1006-4
  • Nakanuma S-I, Tajima H, Okamoto K, et al. Tumor-derived trypsin enhances proliferation of intrahepatic cholangiocarcinoma cells by activating protease-activated receptor-2. Int J Oncol. 2010;36(4):793–800. doi: 10.3892/ijo_00000555
  • Shibata K, Yada K, Matsumoto T, et al. Protease-activating-receptor-2 is frequently expressed in papillary adenocarcinoma of the gallbladder. Oncol Rep. 2004;12:1013–1016. doi: 10.3892/or.12.5.1013
  • Soreide K, Roalso M, Aunan JR. Is there a Trojan horse to aggressive pancreatic cancer biology? A review of the trypsin-PAR2 axis to proliferation early invasion, and metastasis. J Pancreat Cancer. 2020;6(1):12–20. doi: 10.1089/pancan.2019.0014
  • Suhaj P¸olejar T, Matej R, MATEJ R. PAR2: the cornerstone of pancreatic diseases. Physiol Rev. 2022;71:583–596. doi: 10.33549/physiolres.934931
  • Xie L, Duan Z, Kou C, et al. Protease-activated receptor 2 agonist increases cell proliferation and invasion of human pancreatic cancer cells. Exp Ther Med. 2015;9(1):239–244. doi: 10.3892/etm.2014.2052
  • Darmoul D, Marie JC, Devaud H, et al. Initiation of human colon cancer cell proliferation by trypsin acting at protease-activated receptor-2. Br J Cancer. 2001;85(5):772–779. doi: 10.1054/bjoc.2001.1976
  • Darmoul D, Gratio V, Devaud H, et al. Protease-activated receptor 2 in colon cancer: trypsin-induced MAPK phosphorylation and cell proliferation are mediated by epidermal growth factor receptor transactivation. J Biol Chem. 2004;279(20):20927–20934. doi: 10.1074/jbc.M401430200
  • Soreide K, Janssen EA, Korner H, et al. Trypsin in colorectal cancer: molecular biological mechanisms of proliferation, invasion and metastasis. J Pathol. 2006;209(2):147–156. doi: 10.1002/path.1999
  • Decraecker L, Boeckxstaens G, Denadai-Souza A. Inhibition of serine proteases as a novel therapy strategy for abdominal pain in IBS. Front Physiol. 2022;13:880422. doi: 10.3389/fphys.2022.880422
  • Vergnolle N. Clinical relevance of proteinase activated receptors (PARS) in the gut. Gut. 2005;54(6):867–874. doi: 10.1136/gut.2004.048876
  • Rolland-Fourcade C, Denadai-Souza A, Cirillo C, et al. Epithelial expression and function of trypsin-3 in irritable bowel syndrome. Gut. 2017;2017(10):1–12. doi: 10.1136/gutjnl-2016-312094
  • Limburg H, Harbig A, Bestle D, et al. TMPRSS2 is the major activating protease of influenza A virus in primary human airway cells and influenza B virus in human type II pneumocytes. J Virol. 2019;93: doi: 10.1128/JVI.00649-19
  • der Gucht W V, Leemans A, De Schryver M, et al. Respiratory syncytial virus (RSV) entry is inhibited by serine protease inhibitor AEBSF when present during an early stage of infection. Virol J. 2017;14(1):157–166. doi: 10.1186/s12985-017-0824-3
  • Sasaki M, Itakura Y, Kishimoto M, et al. Host serine proteases TMPRSS2 and TMPRSS11D mediate proteolytic activation and trypsin-independent infection in group a rotaviruses. J Virol. 2021 Mar 24;95(11): e00398–21. Epub ahead of print. PMID: 33762412; PMCID: PMC8139689. 10.1128/JVI.00398-21
  • Ebina T, Tsukada K. Protease inhibitors prevent the development of human rotavirus-induced diarrhea in suckling mice. Microbiol Immunol. 1991;35(7):583–588. doi: 10.1111/j.1348-0421.1991.tb01589.x
  • Froriep D, Clement B, Bittner F, et al. Activation of the anti-cancer agent upamostat by the mARC enzyme system. Xenobiotica. 2013;43(9):780–784. doi: 10.3109/00498254.2013.767481
  • Andreasen PA, Kjoller L, Christensen L, et al. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer. 1997;72(1):1–22. doi: 10.1002/(SICI)1097-0215(19970703)72:1<1:AID-IJC1>3.0.CO;2-Z
  • Edwards DR, Murphy G. Proteases — invasion and more. Nature. 1998;394(6693):527–528. doi: 10.1038/28961
  • Meyer JE, Brocks C, Graefe H, et al. The oral serine protease inhibitor WX-671 – first experience in patients with advanced head and Neck Carcinoma. Breast Care. 2008;3(suppl 2):20–24. doi: 10.1159/000151736
  • Heinemann V, Ebert MP, Laubender RP, et al. Phase II randomised proof-of-concept study of the urokinase inhibitor upamostat (W-671) in combination with gemcitabine compared with gemcitabine alone in patients with non-resectable, locally advanced pancreatic cancer. Br J Cancer. 2013;108(4):766–770. doi: 10.1038/bjc.2013.62
  • Goldstein LJ, Oliveira CT, Heinrich B, et al. A randomized double-blind phase II study of the combination of oral WX-671 plus capecitabine versus capecitabine monotherapy in first-line HER2-negative metastatic breast cancer (MBC). J Clin Oncol. 2013;31(15_suppl):508–508. doi: 10.1200/jco.2013.31.15_suppl.508
  • Gunst JD, Staerke NB, Pahus MH, et al. Efficacy of the TMPRSS2 inhibitor camostat mesylate in patients hospitalized with covid-19-a double-blind randomized controlled trial. EClinicalMedicine. 2021;35:100849. doi: 10.1016/j.eclinm.2021.100849
  • Kinoshita T, Shinoda M, Nishizaki Y, et al. A multicenter, double-blind, randomized, parallel-group, placebo-controlled study to evaluate the efficacy and safety of camostat mesylate in patients with COVID-19 (CANDLE study). BMC Med. 2022;20(1):342. doi: 10.1186/s12916-022-02518-7
  • Tobback E, Degroote S, Buysse S, et al. Efficacy and safety of camostat mesylate in early COVID-19 disease in an ambulatory setting: a randomized, placebo-controlled phase II trial. Int J Inf Disease. 2022;122:628–635. doi: 10.1016/j.ijid.2022.06.054
  • Karolyi M, Pawelka E, Omid S, et al. Camostat mesylate versus lopinavir/ritonavir in hospitalized patients with COVID-19-results from a randomized, controlled, open label platform trial (ACOVACT). Front Pharmacol. 2022;13:870493. doi: 10.3389/fphar.2022.870493
  • Kitigawa J, Arai H, Iida H, et al. A phase I study of high dose camostat mesylate in healthy adults provides a rationale to repurpose the TMPRSS2 inhibitor for the treatment of COVID-19. Clin Trans Sci. 2021;14(5):1967–1976. doi: 10.1111/cts.13052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.