302
Views
1
CrossRef citations to date
0
Altmetric
Special Report

Muscarinic M1 and M4 receptor agonists for schizophrenia: promising candidates for the therapeutic arsenal

ORCID Icon
Pages 1113-1121 | Received 07 Oct 2023, Accepted 22 Nov 2023, Published online: 29 Nov 2023

References

  • Shen WW. A history of antipsychotic drug development. Compr Psychiatry. 1999;40:407–414. doi: 10.1016/S0010-440X(99)90082-2
  • Weston-Green K. Antipsychotic drug development: from historical evidence to fresh perspectives. FrontPsychiatr. 2022;13. doi: 10.3389/fpsyt.2022.903156
  • Kane JM. Clinical efficacy of clozapine in treatment-refractory schizophrenia: an overview. BrJpsychiatry Suppl. 1992;41–45. doi: 10.1192/S0007125000296918
  • Copolov DL, Bell WR, Benson WJ, et al. Clozapine treatment in australia: A review of haematological monitoring. MedJaust. 1998;168:495–497. doi: 10.5694/j.1326-5377.1998.tb141414.x
  • Tandon R, Lenderking WR, Weiss C, et al. The impact on functioning of second-generation antipsychotic medication side effects for patients with schizophrenia: a worldwide, cross-sectional, web-based survey. Ann Gen Psychiatry. 2020;19:42. doi: 10.1186/s12991-020-00292-5
  • Potkin SG, Kane JM, Correll CU, et al. The neurobiology of treatment-resistant schizophrenia: paths to antipsychotic resistance and a roadmap for future research. NPJ Schizophr. 2020;6:1. doi: 10.1038/s41537-019-0090-z
  • van Westrhenen R, Ingelman-Sundberg M. Editorial: from trial and error to individualised pharmacogenomics-based pharmacotherapy in psychiatry. Front Pharmacol. 2021;12. doi: 10.3389/fphar.2021.725565
  • Carlsson A. Does dopamine play a role in schizophrenia? Psychol Med. 1977;7(4):583–597. doi: 10.1017/S003329170000622X
  • Felder CC, Porter AC, Skillman TL, et al. Elucidating the role of muscarinic receptors in psychosis. Life Sci. 2001;68(22–23):2605–2613. doi: 10.1016/s0024-3205(01)01059-1
  • Dean B, Bymaster FP, Scarr E. Muscarinic receptors in schizophrenia. Curr Mol Med. 2003;3:419–426. doi: 10.2174/1566524033479654
  • Paul SM, Yohn SE, Popiolek M, et al. Muscarinic acetylcholine receptor agonists as novel treatments for schizophrenia. Am J Psychiatry. 2022;179:611–627. doi: 10.1176/appi.ajp.21101083
  • McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia—an overview. JAMA Psychiatry. 2020;77:201–210. doi: 10.1001/jamapsychiatry.2019.3360
  • Kraguljac N, McDonald W, Widge A, et al. Neuroimaging biomarkers in schizophrenia. Am J Psychiatr. 2021;178:509–521. doi: 10.1176/appi.ajp.2020.20030340
  • American Psychiatric Association. Diagnostic and statistical manual of mental disorders fifth edition. 5. Arlington: American Psychiatric Association; 2013.
  • Howes O, Fusar-Poli P, Osugo M. Treating negative symptoms of schizophrenia: Current approaches and future perspectives. Br J Psychiatry. 2023;223:332–335. doi: 10.1192/bjp.2023.57
  • Scarr E, Gibbons AS, Neo J, et al. Cholinergic connectivity: It’s implications for psychiatric disorders. Front Cell Neurosci. 2013;7:55. doi: 10.3389/fncel.2013.00055
  • Dean B, Scarr E. Muscarinic m1 and m4 receptors: Hypothesis driven drug development for schizophrenia. Psychiatry Res. 2020;288:112989. doi: 10.1016/j.psychres.2020.112989
  • Ogino S, Miyamoto S, Miyake N, et al. Benefits and limits of anticholinergic use in schizophrenia: focusing on its effect on cognitive function. Psychiatry Clin Neurosci. 2014;68:37–49. doi: 10.1111/pcn.12088
  • Joshi YB, Thomas ML, Braff DL, et al. Anticholinergic medication burden–associated cognitive impairment in schizophrenia. Am J Psychiatr. 2021;178:838–847. doi: 10.1176/appi.ajp.2020.20081212
  • Ziskind AA. Transdermal scopolamine-induced psychosis. Postgrad Med. 1988;84:73–76. doi: 10.1080/00325481.1988.11700397
  • Sullivan RJ, Allen JS, Otto C, et al. Effects of chewing betel nut (areca catechu) on the symptoms of people with schizophrenia in palau, micronesia. Br J Psychiatry. 2000;177:174–178. doi: 10.1192/bjp.177.2.174
  • Kozlakidis Z, Cheong IH, Wang H. Betel nut and arecoline: Past, present, and future trends. Innov Digital Health Diagn Biomarkers. 2022;2:64–72. doi: 10.36401/iddb-22-05
  • Shannon HE, Bymaster FP, Calligaro DO, et al. Xanomeline: A novel muscarinic receptor agonist with functional selectivity for m1 receptors. J Pharmacol Exp Ther. 1994;269:271–281.
  • Shannon HE, Rasmussen K, Bymaster FP, et al. Xanomeline, an m(1)/m(4) preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr Res. 2000;42:249–259.
  • Shekhar A, Potter WZ, Lightfoot J, et al. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatr. 2008;165(8):1033–1039. doi: 10.1176/appi.ajp.2008.06091591
  • Breier A, Brannan SK, Paul SM, et al. Evidence of trospium’s ability to mitigate cholinergic adverse events related to xanomeline: phase 1 study results. Psychopharmacol (Berl). 2023;240:1191–1198. doi: 10.1007/s00213-023-06362-2
  • Correll CU, Angelov AS, Miller AC, et al. Safety and tolerability of karxt (xanomeline–trospium) in a phase 2, randomized, double-blind, placebo-controlled study in patients with schizophrenia. Schizophrenia. 2022;8:109. doi: 10.1038/s41537-022-00320-1
  • Correll CU, Miller AC, Sawchak S, et al. Safety and efficacy of karxt (xanomeline trospium) in schizophrenia in the phase 3, randomized, double-blind, placebo-controlled emergent-2 trial. CNS Spectr. 2023;28:220–220. doi: 10.1017/S1092852923001360
  • Brannan SK, Sawchak S, Miller AC, et al. Muscarinic cholinergic receptor agonist and peripheral antagonist for schizophrenia. N Engl J Med. 2021;384:717–726. doi: 10.1056/NEJMoa2017015
  • Sauder C, Allen LA, Baker E, et al. Effectiveness of karxt (xanomeline-trospium) for cognitive impairment in schizophrenia: post hoc analyses from a randomised, double-blind, placebo-controlled phase 2 study. TransPsychiatr. 2022;12:491. doi: 10.1038/s41398-022-02254-9
  • Weiden PJ, Breier A, Kavanagh S, et al. Antipsychotic efficacy of karxt (xanomeline-trospium): post hoc analysis of positive and negative syndrome scale categorical response rates, time course of response, and symptom domains of response in a phase 2 study. J Clin Psychiatry. 2022;83:21m14316. doi: 10.4088/JCP.21m14316
  • Yohn SE, Weiden PJ, Felder CC, et al. Muscarinic acetylcholine receptors for psychotic disorders: bench-side to clinic. Trends Pharmacol Sci. 2022;43:1098–1112. doi: 10.1016/j.tips.2022.09.006
  • Davis L. Maplight therapeutics announces completion of phase 1 clinical trial for ml-007, a novel therapy for the treatment of schizophrenia and dyskinesias. In: Maplight; 2023.
  • Foster DJ, Bryant ZK, Conn PJ. Targeting muscarinic receptors to treat schizophrenia. Behav Brain Res. 2021;405:113201. doi: 10.1016/j.bbr.2021.113201
  • van der Westhuizen ET, Choy KHC, Valant C, et al. Fine tuning muscarinic acetylcholine receptor signaling through allostery and bias. Front Pharmacol. 2020;11:606656. doi: 10.3389/fphar.2020.606656
  • Moran SP, Maksymetz J, Conn PJ. Targeting muscarinic acetylcholine receptors for the treatment of psychiatric and neurological disorders. Trends Pharmacol Sci. 2019;40:1006–1020. doi: 10.1016/j.tips.2019.10.007
  • Jakubik J, El-Fakahany EE. Current advances in allosteric modulation of muscarinic receptors. Biomolecules. 2020;10. doi: 10.3390/biom10020325
  • Krystal JH, Kane JM, Correll CU, et al. Emraclidine, a novel positive allosteric modulator of cholinergic m4 receptors, for the treatment of schizophrenia: a two-part, randomised, double-blind, placebo-controlled, phase 1b trial. Lancet. 2022;400(10369):2210–2220. doi: 10.1016/S0140-6736(22)01990-0
  • Stuke H. Markers of muscarinic deficit for individualized treatment in schizophrenia. FrontPsychiatr. 2023;13. doi: 10.3389/fpsyt.2022.1100030
  • Johnson CR, Kangas BD, Jutkiewicz EM, et al. Drug design targeting the muscarinic receptors and the implications in central nervous system disorders. Biomedicines. 2022;10(2):398. doi: 10.3390/biomedicines10020398
  • Nathan PJ, Watson J, Lund J, et al. The potent m(1) receptor allosteric agonist gsk1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int J Neuropsychopharmacol. 2013;16:721–731.
  • Nguyen HTM, van der Westhuizen ET, Langmead CJ, et al. Opportunities and challenges for the development of m1 muscarinic receptor positive allosteric modulators in the treatment for neurocognitive deficits. Br J Pharmacol. 2022;n/a:15982. doi: 10.1111/bph.15982
  • Dean B, Crook JM, Opeskin K, et al. The density of muscarinic m1 receptors is decreased in the caudate-putamen of subjects with schizophrenia. Mol Psychiatry. 1996;1:54–58.
  • Crook JM, Tomaskovic-Crook E, Copolov DL, et al. Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: a study of brodmann’s areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment. Am J Psychiatr. 2001;158(6):918–925. doi: 10.1176/appi.ajp.158.6.918
  • Gibbons A, Scarr E, Boer S, et al. Widespread decreases in cortical muscarinic receptors in a subset of people with schizophrenia. Int J Neuropsychopharmacol. 2013;16(1):37–46. doi: 10.1017/S1461145712000028
  • Deng C, Huang XF. Decreased density of muscarinic receptors in the superior temporal gyrus in schizophrenia. J Neurosci Res. 2005;81(6):883–890. doi: 10.1002/jnr.20600
  • Zavitsanou K, Katsifis A, Filomena M, et al. Investigation of m1/m4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacol. 2004;29:619–625.
  • Crook JM, Tomaskovic-Crook E, Copolov DL, et al. Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatr. 2000;48:381–388.
  • Dean B, Gray L, Keriakous D, et al. A comparison of m1 and m4 muscarinic receptors in the thalamus from control subjects and subjects with schizophrenia. Thalamus Relat Syst. 2004;2:287–295.
  • Scarr E. Muscarinic receptors: their roles in disorders of the central nervous system and potential as therapeutic targets. CNS Neurosci Ther. 2012;18:369–379. doi: 10.1111/j.1755-5949.2011.00249.x
  • Zavitsanou K, Katsifis A, Yu Y, et al. M2/m4 muscarinic receptor binding in the anterior cingulate cortex in schizophrenia and mood disorders. Brain ResBull. 2005;65(5):397–403. doi: 10.1016/j.brainresbull.2005.02.007
  • Gibbons AS, Scarr E, McLean C, et al. Decreased muscarinic receptor binding in the frontal cortex of bipolar disorder and major depressive disorder subjects. J Affect Disord. 2009;116(3):184–191. doi: 10.1016/j.jad.2008.11.015
  • Scarr E, McLean C, Dean B. Higher levels of different muscarinic receptors in the cortex and hippocampus from subjects with alzheimer’s disease. J Neural Transm. 2017;124:273–284. doi: 10.1007/s00702-016-1625-3
  • McOmish C, Pavey G, McLean C, et al. Muscarinic receptor binding changes in postmortem parkinson’s disease. J Neural Transm. 2017;124:227–236. doi: 10.1007/s00702-016-1629-z
  • Dean B, McLeod M, Keriakous D, et al. Decreased muscarinic(1) receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry. 2002;7:1083–1091.
  • Mancama D, Arranz MJ, Landau S, et al. Reduced expression of the muscarinic 1 receptor cortical subtype in schizophrenia. Am J Med Genet B: Neuropsych Genet. 2003;119:2–6.
  • Scarr E, Sundram S, Keriakous D, et al. Altered hippocampal muscarinic m4, but not m1, receptor expression from subjects with schizophrenia. Biol Psychiatr. 2007;61:1161–1170.
  • Scarr E, Hopper S, Vos V, et al. Low levels of muscarinic m1 receptor positive neurons in cortical layers iii and v in brodmann’s areas 9 and 17 from individuals with schizophrenia. J Psychiatry Neurosci. 2018;43:338–346.
  • Raedler TJ, Knable MB, Jones DW et al. In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia. Am J Psychiatr. 2003;160(1):118–127. doi: 10.1176/appi.ajp.160.1.118
  • Bakker G, Vingerhoets WA, van Wieringen JP, et al. 123i-iododexetimide preferentially binds to the muscarinic receptor subtype m1 in vivo. J Nucl Med. 2015;56:317–322. doi: 10.2967/jnumed.114.147488
  • Bakker G, Vingerhoets C, Boucherie D, et al. Relationship between muscarinic m1 receptor binding and cognition in medication-free subjects with psychosis. NeuroImage Clin. 2018;18:713–719. doi: 10.1016/j.nicl.2018.02.030
  • Wess J. Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol. 2004;44(1):423–450. doi: 10.1146/annurev.pharmtox.44.101802.121622
  • Wess J, Duttaroy A, Zhang W, et al. M1-m5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. ReceptorsChannels. 2003;9(4):279–290. doi: 10.3109/10606820308262
  • Dean B, Scarr E. Changes in cortical gene expression in the muscarinic m1 receptor knockout mouse: potential relevance to schizophrenia, alzheimer’s disease and cognition. NPJ Schizophr. 2021;7:44. doi: 10.1038/s41537-021-00174-z
  • Scarr E, Udawela M, Dean B. Changed frontal pole gene expression suggest altered interplay between neurotransmitter, developmental, and inflammatory pathways in schizophrenia. NPJ Schizophr. 2018;4:4. doi: 10.1038/s41537-018-0044-x
  • Conn PJ, Jones CK, Lindsley CW. Subtype-selective allosteric modulators of muscarinic receptors for the treatment of cns disorders. TIPS. 2009;30:148–155.
  • Hassani SA, Neumann A, Russell J, et al. M(1)-selective muscarinic allosteric modulation enhances cognitive flexibility and effective salience in nonhuman primates. Proc Natl Acad Sci U S A. 2023;120:e2216792120. doi: 10.1073/pnas.2216792120
  • Lange HS, Cannon CE, Drott JT, et al. The m1 muscarinic positive allosteric modulator pqca improves performance on translatable tests of memory and attention in rhesus monkeys. J Pharmacol Exp Ther. 2015;355:442–450. doi: 10.1124/jpet.115.226712
  • Kucinski A, Phillips KB, Koshy Cherian A, et al. Rescuing the attentional performance of rats with cholinergic losses by the m1 positive allosteric modulator tak-071. Psychopharmacol (Berl). 2020;237:137–153. doi: 10.1007/s00213-019-05354-5
  • Holschneider DP, Guo Y, Wang Z, et al. Positive allosteric modulation of cholinergic receptors improves spatial learning after cortical contusion injury in mice. J Neurotrauma. 2019;36:2233–2245. doi: 10.1089/neu.2018.6036
  • Rook JM, Bertron JL, Cho HP, et al. A novel m(1) pam vu0486846 exerts efficacy in cognition models without displaying agonist activity or cholinergic toxicity. ACS Chem Neurosci. 2018;9:2274–2285. doi: 10.1021/acschemneuro.8b00131
  • Puri V, Wang X, Vardigan JD, et al. The selective positive allosteric m1 muscarinic receptor modulator pqca attenuates learning and memory deficits in the tg2576 alzheimer’s disease mouse model. Behav Brain Res. 2015;287:96–99. doi: 10.1016/j.bbr.2015.03.029
  • Gould RW, Dencker D, Grannan M, et al. Role for the m1 muscarinic acetylcholine receptor in top-down cognitive processing using a touchscreen visual discrimination task in mice. ACS Chem Neurosci. 2015;6:1683–1695. doi: 10.1021/acschemneuro.5b00123
  • Abd-Elrahman KS, Sarasija S, Colson TL, et al. A positive allosteric modulator for the muscarinic receptor (m1 machr) improves pathology and cognitive deficits in female appswe/psen1deltae9 mice. Br J Pharmacol. 2022;179:1769–1783. doi: 10.1111/bph.15750
  • Gould RW, Russell JK, Nedelcovych MT, et al. Modulation of arousal and sleep/wake architecture by m1 pam vu0453595 across young and aged rodents and nonhuman primates. Neuropsychopharmacol. 2020;45:2219–2228. doi: 10.1038/s41386-020-00812-7
  • Maksymetz J, Joffe ME, Moran SP, et al. M(1) muscarinic receptors modulate fear-related inputs to the prefrontal cortex: implications for novel treatments of posttraumatic stress disorder. Biol Psychiatry. 2019;85:989–1000. doi: 10.1016/j.biopsych.2019.02.020
  • Walker LC, Campbell EJ, Huckstep KL, et al. M(1) muscarinic receptor activation decreases alcohol consumption via a reduction in consummatory behavior. Pharmacol Res Perspect. 2022;10:e00907. doi: 10.1002/prp2.907
  • Galvin VC, Yang S, Lowet AS, et al. M1 receptors interacting with nmdar enhance delay-related neuronal firing and improve working memory performance. Curr Res Neurobiol. 2021;2. doi: 10.1016/j.crneur.2021.100016
  • McCutcheon RA, Keefe RSE, McGuire PK. Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Mol Psychiatry. 2023. doi: 10.1038/s41380-023-01949-9
  • Cieslik P, Domin H, Chocyk A, et al. Simultaneous activation of mglu(2) and muscarinic receptors reverses mk-801-induced cognitive decline in rodents. Neuropharmacol. 2020;174:107866. doi: 10.1016/j.neuropharm.2019.107866
  • Wolf DH, Zheng D, Kohler C, et al. Effect of mglur2 positive allosteric modulation on frontostriatal working memory activation in schizophrenia. Mol Psychiatry. 2022;27:1226–1232. doi: 10.1038/s41380-021-01320-w
  • Cieślik P, Woźniak M, Rook JM, et al. Mutual activation of glutamatergic mglu4 and muscarinic m4 receptors reverses schizophrenia-related changes in rodents. Psychopharmacol (Berl). 2018;235:2897–2913. doi: 10.1007/s00213-018-4980-y
  • Dogra S, Conn PJ. Metabotropic glutamate receptors as emerging targets for the treatment of schizophrenia. Mol Pharmacol. 2022;101:275–285. doi: 10.1124/molpharm.121.000460
  • Lange HS, Vardigan JD, Cannon CE, et al. Effects of a novel m4 muscarinic positive allosteric modulator on behavior and cognitive deficits relevant to alzheimer’s disease and schizophrenia in rhesus monkey. Neuropharmacol. 2021;197:108754. doi: 10.1016/j.neuropharm.2021.108754
  • Gould RW, Grannan MD, Gunter BW, et al. Cognitive enhancement and antipsychotic-like activity following repeated dosing with the selective m4 pam vu0467154. Neuropharmacol. 2018;128:492–502. doi: 10.1016/j.neuropharm.2017.07.013
  • Grauer SM, Sanoja R, Poulin D, et al. Antinociceptive effects of potent, selective and brain penetrant muscarinic m(4) positive allosteric modulators in rodent pain models. Brain Res. 2020;1737:146814. doi: 10.1016/j.brainres.2020.146814
  • Dall C, Weikop P, Dencker D, et al. Muscarinic receptor m(4) positive allosteric modulators attenuate central effects of cocaine. Drug Alcohol Depend. 2017;176:154–161. doi: 10.1016/j.drugalcdep.2017.03.014
  • Nair AG, Castro LRV, El Khoury M, et al. The high efficacy of muscarinic m4 receptor in d1 medium spiny neurons reverses striatal hyperdopaminergia. Neuropharmacol. 2019;146:74–83. doi: 10.1016/j.neuropharm.2018.11.029
  • Foster DJ, Wilson JM, Remke DH, et al. Antipsychotic-like effects of m4 positive allosteric modulators are mediated by cb2 receptor-dependent inhibition of dopamine release. Neuron. 2016;91:1244–1252. doi: 10.1016/j.neuron.2016.08.017
  • Thomsen M, Crittenden JR, Lindsley CW, et al. Effects of acute and repeated administration of the selective m(4) pam vu0152099 on cocaine versus food choice in male rats. Addict Biol. 2022;27:e13145. doi: 10.1111/adb.13145
  • Stoll K, Hart R, Lindsley CW, et al. Effects of muscarinic m(1) and m(4) acetylcholine receptor stimulation on extinction and reinstatement of cocaine seeking in male mice, independent of extinction learning. Psychopharmacol (Berl). 2018;235:815–827. doi: 10.1007/s00213-017-4797-0
  • Brugnoli A, Pisano CA, Morari M. Striatal and nigral muscarinic type 1 and type 4 receptors modulate levodopa-induced dyskinesia and striato-nigral pathway activation in 6-hydroxydopamine hemilesioned rats. Neurobiol Dis. 2020;144:105044. doi: 10.1016/j.nbd.2020.105044
  • Thorn CA, Moon J, Bourbonais CA, et al. Striatal, hippocampal, and cortical networks are differentially responsive to the m4- and m1-muscarinic acetylcholine receptor mediated effects of xanomeline. ACS Chem Neurosci. 2019;10:3910. doi: 10.1021/acschemneuro.9b00335
  • Power SK, Venkatesan S, Lambe EK. Xanomeline restores endogenous nicotinic acetylcholine receptor signaling in mouse prefrontal cortex. Neuropsychopharmacol. 2023;48:671–682. doi: 10.1038/s41386-023-01531-5
  • Russell JK, Ingram SM, Teal LB, et al. M(1)/m(4)-preferring muscarinic cholinergic receptor agonist xanomeline reverses wake and arousal deficits in nonpathologically aged mice. ACS Chem Neurosci. 2023;14:435–457. doi: 10.1021/acschemneuro.2c00592
  • Fellner C. New schizophrenia treatments address unmet clinical needs. Pharm Ther. 2017;42:130–134.
  • Kaskie RE, Graziano B, Ferrarelli F. Schizophrenia and sleep disorders: Links, risks, and management challenges. Nat Sci Sleep. 2017;9:227–239. doi: 10.2147/NSS.S121076
  • Kavanagh DJ, McGrath J, Saunders JB, et al. Substance misuse in patients with schizophrenia: epidemiology and management. Drugs. 2002;62:743–755. doi: 10.2165/00003495-200262050-00003
  • Dean B. Signal transmission, rather than reception, is the underlying neurochemical abnormality in schizophrenia. Aust NZ J Psychiatry. 2000;34:560–569.
  • Slifstein M, van de Giessen E, Van Snellenberg J, et al. Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiatry. 2015;72:316–324. doi: 10.1001/jamapsychiatry.2014.2414
  • Bleuler E. Demetia praecox or the groups of schizophrenias. (NY): International Press; 1950.
  • Insel TR. Rethinking schizophrenia. Nature. 2010;468:187–193. doi: 10.1038/nature09552
  • Dean B, Moller HJ, Svensson TH, et al. Problems and solutions to filling the drying drug pipeline for psychiatric disorders: a report from the inaugural 2012 cinp think-tank. Int J Neuropsychopharmacol. 2013;17:137–148.
  • AK-M L, Lin J-J, Tseng H-H, et al. DNA methylation signature aberration as potential biomarkers in treatment-resistant schizophrenia: constructing a methylation risk score using a machine learning method. J Psychiatr Res. 2023;157:57–65. doi: 10.1016/j.jpsychires.2022.11.008
  • Pérez-Rodríguez D, Penedo MA, Rivera-Baltanás T, et al. Mirna differences related to treatment-resistant schizophrenia. Int J Mol Sci. 2023;24(3):1891. doi: 10.3390/ijms24031891
  • Scarr E, Cowie TF, Kanellakis S, et al. Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Mol Psychiatry. 2009;14(11):1017–1023. doi: 10.1038/mp.2008.28
  • Dean B, Haroutunian V, Scarr E. Lower levels of cortical [3h]pirenzepine binding to postmortem tissue defines a sub-group of older people with schizophrenia with less severe cognitive deficits. Schizophr Res. 2023;255:174–282.
  • Gale EA. The discovery of type 1 diabetes. Diabetes. 2001;50:217–226.
  • Scarr E, Udawela M, Thomas EA, et al. Changed gene expression in subjects with schizophrenia and low cortical muscarinic m1 receptors predicts disrupted upstream pathways interacting with that receptor. Mol Psychiatry. 2018;23:295–303. doi: 10.1038/mp.2016.195
  • Scarr E, Craig JM, Cairns MJ, et al. Decreased cortical muscarinic m1 receptors in schizophrenia are associated with changes in gene promoter methylation, mrna and gene targeting microrna. TransPsychiatr. 2013;3:e230.
  • Dean B, Thomas N, Lai CY, et al. Changes in cholinergic and glutamatergic markers in the striatum from a sub-set of subjects with schizophrenia. Schizophr Res. 2015;169:83–88. doi: 10.1016/j.schres.2015.10.028
  • Dean B, Pavey G, Scarr E. Higher levels of α7 nicotinic receptors, but not choline acetyltransferase, in the dorsolateral prefrontal cortex from a sub-group of patients with schizophrenia. Schizophr Res. 2020;222:283–290. doi: 10.1016/j.schres.2020.05.034
  • Salah-Uddin H, Scarr E, Pavey G, et al. Altered m(1) muscarinic acetylcholine receptor (chrm1)-galpha(q/11) coupling in a schizophrenia endophenotype. Neuropsychopharmacol. 2009;34:2156–2166.
  • Dean B, Hopper S, Conn PJ, et al. Changes in bqca allosteric modulation of [3h]nms binding to human cortex within schizophrenia and by divalent cations. Neuropsychopharmacol. 2016;41:1620–1628. doi: 10.1038/npp.2015.330
  • Hopper S, Pavey GM, Gogos A, et al. Widespread changes in positive allosteric modulation of the muscarinic m1 receptor in some participants with schizophrenia. Int J Neuropsychopharmacol. 2019;22:640–650. doi: 10.1093/ijnp/pyz045
  • Scarr E, Udawela M, Greenough MA, et al. Altered expression of the zinc transporter slc39a12 suggests a breakdown in zinc cortical homeostasis as part of the pathophysiology of schizophrenia. NPJ Schizophr. 2016;2:16002. doi: 10.1038/npjschz.2016.2
  • Terry AV, Callahan PM. Α7 nicotinic acetylcholine receptors as therapeutic targets in schizophrenia: update on animal and clinical studies and strategies for the future. Neuropharmacol. 2020;170:108053. doi: 10.1016/j.neuropharm.2020.108053
  • Rowe CC, Krishnadas N, Ackermann U, et al. Pet imaging of brain muscarinic receptors with (18)f-fluorobenzyl-dexetimide: A first in human study. Psychiatry Res Neuroimaging. 2021;316:111354. doi: 10.1016/j.pscychresns.2021.111354
  • Tong L, Li W, Lo MM, et al. Discovery of [(11)c]mk-6884: a positron emission tomography (pet) imaging agent for the study of m4muscarinic receptor positive allosteric modulators (pams) in neurodegenerative diseases. J Med Chem. 2020;63:2411–2425. doi: 10.1021/acs.jmedchem.9b01406
  • Deng X, Hatori A, Chen Z, et al. Synthesis and preliminary evaluation of (11) c-labeled vu0467485/az13713945 and its analogues for imaging muscarinic acetylcholine receptor subtype 4. ChemMedchem. 2019;14:303–309. doi: 10.1002/cmdc.201800710
  • Committee on Strategies for Responsible Sharing of Clinical Trial D. Board on Health Sciences P, institute of M. In: Sharing clinical trial data: maximizing benefits, minimizing risk. (WA) (DC): National Academies Press (US) Copyright 2015 by the National Academy of Sciences. All rights reserved.; 2015.
  • Donati FL, D’Agostino A, Ferrarelli F. Neurocognitive and neurophysiological endophenotypes in schizophrenia: an overview. Biomark Neuropsychiatry. 2020;3:100017. doi: 10.1016/j.bionps.2020.100017
  • Dean B, Thomas EHX, Bozaoglu K, et al. Evidence that a working memory cognitive phenotype within schizophrenia has a unique underlying biology. Psychiatry Res. 2022;317:114873. doi: 10.1016/j.psychres.2022.114873

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.