248
Views
0
CrossRef citations to date
0
Altmetric
Review

Augmentation of natriuretic peptide (NP) receptor A and B (NPR-A and NPR-B) and cyclic guanosine monophosphate (cGMP) signalling as a therapeutic strategy in heart failure

, , , , ORCID Icon, , , , , , & show all
Pages 1157-1170 | Received 21 Jun 2023, Accepted 28 Nov 2023, Published online: 05 Dec 2023

References

  • Bozkurt B, Hershberger RE, Butler J, et al. ACC/AHA key data elements and definitions for heart failure: a report of the American College of Cardiology/American heart Association Task Force on clinical data Standards (Writing Committee to develop clinical data Standards for heart failure). Circ Cardiovasc Qual Outcomes. 2021 Apr;14(4):e000102. doi: 10.1161/HCQ.0000000000000102
  • Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016 Jun;13(6):368–378. doi: 10.1038/nrcardio.2016.25
  • Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012 Dec 15;380(9859):2163–96. doi: 10.1016/S0140-6736(12)61729-2
  • Benedict CR, Shelton B, Johnstone DE, et al. Prognostic significance of plasma norepinephrine in patients with asymptomatic left ventricular dysfunction SOLVD Investigators. Circulation. 1996 Aug 15;94(4):690–697. doi: 10.1161/01.CIR.94.4.690
  • Francis GS, McDonald KM, Cohn JN. Neurohumoral activation in preclinical heart failure. Remodeling and the potential for intervention. Circulation. 1993 May;87(5 Suppl):Iv90–6.
  • Magri P, Rao MA, Cangianiello S, et al. Early impairment of renal hemodynamic reserve in patients with asymptomatic heart failure is restored by angiotensin II antagonism. Circulation. 1998 Dec 22–29;98(25):2849–54. doi: 10.1161/01.CIR.98.25.2849
  • Mastromarino V, Volpe M, Musumeci MB, et al. Erythropoietin and the heart: facts and perspectives. Clin Sci (Lond). 2011 Jan;120(2):51–63. doi: 10.1042/CS20100305
  • Shenker Y, Sider RS, Ostafin EA, et al. Plasma levels of immunoreactive atrial natriuretic factor in healthy subjects and in patients with edema. J Clin Invest. 1985 Oct;76(4):1684–1687. doi: 10.1172/JCI112154
  • Sullivan RD, Mehta RM, Tripathi R, et al. Renin Activity in Heart Failure with Reduced Systolic Function—New Insights. Int J Mol Sci. 2019 Jun 28;20(13):3182. doi: 10.3390/ijms20133182
  • Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017 Jan;14(1):30–38. doi: 10.1038/nrcardio.2016.163
  • Hjalmarson A, Goldstein S, Fagerberg B, et al. Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the metoprolol CR/XL randomized intervention trial in congestive heart failure (MERIT-HF). MERIT-HF study group. JAMA. 2000 Mar 8;283(10):1295–302. doi: 10.1001/jama.283.10.1295
  • Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001 May 31;344(22):1651–8. doi: 10.1056/NEJM200105313442201
  • McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the heart failure Association (HFA) of the ESC. Eur J Heart Fail. 2012 Aug;14(8):803–69. doi: 10.1093/eurjhf/hfs105
  • Yusuf S, Pitt B, Davis CE, et al. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991 Aug 1;325(5):293–302.
  • Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved trial. Lancet. 2003 Sep 6;362(9386):777–781. doi: 10.1016/S0140-6736(03)14285-7
  • Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011 Jan 6;364(1):11–21. doi: 10.1056/NEJMoa1009492
  • Taylor CJ, Ordóñez-Mena JM, Roalfe AK, et al. Trends in survival after a diagnosis of heart failure in the United Kingdom 2000–2017: population based cohort study. BMJ. 2019;364:l223. doi: 10.1136/bmj.l223
  • Ponikowski P, Voors AA, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (Esc)developed with the special contribution of the heart failure Association (HFA) of the ESC. Eur Heart J. 2016 Jul 14;37(27):2129–2200. doi: 10.1093/eurheartj/ehw128
  • Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American heart Association Task Force on clinical practice guidelines and the heart failure Society of America. Circulation. 2017 Aug 8;136(6):e137–e161. doi: 10.1161/CIR.0000000000000509
  • Tsutsui H, Isobe M, Ito H, et al. JCS 2017/JHFS 2017 guideline on diagnosis and treatment of acute and chronic heart failure - digest version. Circ J. 2019 Sep 25;83(10):2084–2184. doi: 10.1253/circj.CJ-19-0342
  • Sudoh T, Minamino N, Kangawa K, et al. C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun. 1990 Apr 30;168(2):863–870. doi: 10.1016/0006-291X(90)92401-K
  • Mukoyama M, Nakao K, Hosoda K, et al. Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest. 1991 Apr;87(4):1402–1412. doi: 10.1172/JCI115146
  • de Bold AJ, Borenstein HB, Veress AT, et al. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981 Jan 5;28(1):89–94. doi: 10.1016/0024-3205(81)90370-2
  • Sangaralingham SJ, Kuhn M, Cannone V, et al. Natriuretic peptide pathways in heart failure: further therapeutic possibilities. Cardiovasc Res. 2023 Feb 3;118(18):3416–3433. doi: 10.1093/cvr/cvac125
  • Chen Y, Burnett JC Jr. Biochemistry, therapeutics, and biomarker implications of neprilysin in cardiorenal disease. Clin Chem. 2017 Jan;63(1):108–115. doi: 10.1373/clinchem.2016.262907
  • Kuhn M. Molecular physiology of membrane guanylyl cyclase receptors. Physiol Rev. 2016, Apr;96(2):751–804. doi: 10.1152/physrev.00022.2015
  • Abassi Z, Khoury EE, Karram T, et al. Edema formation in congestive heart failure and the underlying mechanisms. Front Cardiovasc Med. 2022;9:933215. doi: 10.3389/fcvm.2022.933215
  • Melé M, Ferreira PG, Reverter F, et al. Human genomics. The human transcriptome across tissues and individuals. Science. 2015 May 8;348(6235):660–665. doi: 10.1126/science.aaa0355
  • Nagase M, Katafuchi T, Hirose S, et al. Tissue distribution and localization of natriuretic peptide receptor subtypes in stroke-prone spontaneously hypertensive rats. J Hypertens. 1997 Nov;15(11):1235–1243. doi: 10.1097/00004872-199715110-00007
  • Potter LR. Domain analysis of human transmembrane guanylyl cyclase receptors: implications for regulation. Front Biosci. 2005 May 1;10(1–3):1205–1220. doi: 10.2741/1613
  • Ashman DF, Lipton R, Melicow MM, et al. Isolation of adenosine 3‘, 5’-monophosphate and guanosine 3‘, 5’-monophosphate from rat urine. Biochem Biophys Res Commun. 1963 May 22;11:330–4. doi: 10.1016/0006-291X(63)90566-7
  • Schlossmann J, Feil R, Hofmann F. Insights into cGMP signalling derived from cGMP kinase knockout mice. Front Biosci. 2005 May 1;10:1279–89. doi: 10.2741/1618
  • Emdin M, Aimo A, Castiglione V, et al. Targeting cyclic guanosine monophosphate to treat heart failure: JACC review Topic of the Week. J Am Coll Cardiol. 2020 Oct 13;76(15):1795–1807. doi: 10.1016/j.jacc.2020.08.031
  • Lommi J, Pulkki K, Koskinen P, et al. Haemodynamic, neuroendocrine and metabolic correlates of circulating cytokine concentrations in congestive heart failure. Eur Heart J. 1997 Oct;18(10):1620–1625. doi: 10.1093/oxfordjournals.eurheartj.a015142
  • van Heerebeek L, Hamdani N, Falcão-Pires I, et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation. 2012 Aug 14;126(7):830–9. doi: 10.1161/CIRCULATIONAHA.111.076075
  • Velazquez EJ, Morrow DA, DeVore AD, et al. Angiotensin-neprilysin inhibition in acute decompensated heart failure. N Engl J Med. 2019 Feb 7;380(6):539–548. doi: 10.1056/NEJMoa1812851
  • Pieske B, Wachter R, Shah SJ, et al. Effect of Sacubitril/Valsartan vs standard Medical therapies on plasma NT-proBNP Concentration and submaximal exercise capacity in patients with heart failure and preserved ejection fraction: the PARALLAX randomized clinical trial. JAMA. 2021 Nov 16;326(19):1919–1929. doi: 10.1001/jama.2021.18463
  • Moe GW, Forster C, de Bold AJ, et al. Pharmacokinetics, hemodynamic, renal, and neurohormonal effects of atrial natriuretic factor in experimental heart failure. Clin Invest Med. 1990 Jun;13(3):111–118.
  • Marin-Grez M, Fleming JT, Steinhausen M. Atrial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney. Nature. 1986 Dec 4–10;324(6096):473–476. doi: 10.1038/324473a0
  • Harris PJ, Thomas D, Morgan TO. Atrial natriuretic peptide inhibits angiotensin-stimulated proximal tubular sodium and water reabsorption. Nature. 1987 Apr 16–22;326(6114):697–698. doi: 10.1038/326697a0
  • Light DB, Corbin JD, Stanton BA. Dual ion-channel regulation by cyclic GMP and cyclic GMP-dependent protein kinase. Nature. 1990 Mar 22;344(6264):336–339. doi: 10.1038/344336a0
  • Gopi V, Parthasarathy A, Umadevi S, et al. Angiotensin-II down-regulates cardiac natriuretic peptide receptor-A mediated anti-hypertrophic signaling in experimental rat hearts. Indian J Exp Biol. 2013 Jan;51(1):48–55.
  • Yoshimoto T, Naruse M, Naruse K, et al. Angiotensin II-dependent down-regulation of vascular natriuretic peptide type C receptor gene expression in hypertensive rats. Endocrinology. 1996 Mar;137(3):1102–1107. doi: 10.1210/endo.137.3.8603580
  • Carvajal JA, Germain AM, Huidobro-Toro JP, et al. Molecular mechanism of cGMP-mediated smooth muscle relaxation. J Cell Physiol. 2000 Sep;184(3):409–420. doi: 10.1002/1097-4652(200009)184:3<409:AID-JCP16>3.0.CO;2-K
  • Chartier L, Schiffrin E, Thibault G, et al. Atrial natriuretic factor inhibits the stimulation of aldosterone secretion by angiotensin ii, acth and potassium in vitro and angiotensin ii-induced steroidogenesis in vivo. Endocrinology. 1984, Nov;115(5):2026–2028. doi: 10.1210/endo-115-5-2026
  • Kudo T, Baird A. Inhibition of aldosterone production in the adrenal glomerulosa by atrial natriuretic factor. Nature. 1984 Dec 20 1985 Jan 2;312(5996):756–7. doi: 10.1038/312756a0
  • Calderone A, Thaik CM, Takahashi N, et al. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest. 1998 Feb 15;101(4):812–818. doi: 10.1172/JCI119883
  • Pandey KN. Genetic ablation and guanylyl cyclase/natriuretic peptide receptor-A: impact on the pathophysiology of cardiovascular dysfunction. Int J Mol Sci. 2019 Aug 14;20(16):3946. doi: 10.3390/ijms20163946
  • Hayashi D, Kudoh S, Shiojima I, et al. Atrial natriuretic peptide inhibits cardiomyocyte hypertrophy through mitogen-activated protein kinase phosphatase-1. Biochem Biophys Res Commun. 2004 Sep 10;322(1):310–319. doi: 10.1016/j.bbrc.2004.07.119
  • Fujita S, Shimojo N, Terasaki F, et al. Atrial natriuretic peptide exerts protective action against angiotensin II-induced cardiac remodeling by attenuating inflammation via endothelin-1/endothelin receptor a cascade. Heart Vessels. 2013 Sep;28(5):646–657. doi: 10.1007/s00380-012-0311-0
  • Volpe M, Lembo G, Condorelli G, et al. Converting enzyme inhibition prevents the effects of atrial natriuretic factor on baroreflex responses in humans. Circulation. 1990 Oct;82(4):1214–1221. doi: 10.1161/01.CIR.82.4.1214
  • Itoh T, Nagaya N, Murakami S, et al. C-type natriuretic peptide ameliorates monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med. 2004 Dec 1;170(11):1204–1211. doi: 10.1164/rccm.200404-455OC
  • Murakami S, Nagaya N, Itoh T, et al. C-type natriuretic peptide attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol. 2004 Dec;287(6):L1172–7. doi: 10.1152/ajplung.00087.2004
  • Hamad AM, Clayton A, Islam B, et al. Guanylyl cyclases, nitric oxide, natriuretic peptides, and airway smooth muscle function. Am J Physiol Lung Cell Mol Physiol. 2003 Nov;285(5):L973–83. doi: 10.1152/ajplung.00033.2003
  • Raine AE, Erne P, Bürgisser E, et al. Atrial natriuretic peptide and atrial pressure in patients with congestive heart failure. N Engl J Med. 1986 Aug 28;315(9):533–7. doi: 10.1056/NEJM198608283150901
  • Ibebuogu UN, Gladysheva IP, Houng AK, et al. Decompensated heart failure is associated with reduced corin levels and decreased cleavage of pro-atrial natriuretic peptide. Circ Heart Fail. 2011 Mar;4(2):114–20. doi: 10.1161/CIRCHEARTFAILURE.109.895581
  • Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci (Lond). 2016 Jan;130(2):57–77. doi: 10.1042/CS20150469
  • Dries DL. Process matters: emerging concepts underlying impaired natriuretic peptide system function in heart failure. Circ Heart Fail. 2011 Mar;4(2):107–110. doi: 10.1161/CIRCHEARTFAILURE.111.960948
  • Gorica E, Mohammed SA, Ambrosini S, et al. Epi-Drugs in Heart Failure. Front Cardiovasc Med. 2022;9:923014. doi: 10.3389/fcvm.2022.923014
  • Nemtsova MV, Zaletaev DV, Bure IV, et al. Epigenetic changes in the pathogenesis of rheumatoid arthritis. Front Genet. 2019;10:570. doi: 10.3389/fgene.2019.00570
  • Nebbioso A, Tambaro FP, Dell’aversana C, et al. Cancer epigenetics: moving forward. PLoS Genet. 2018 Jun;14(6):e1007362. doi: 10.1371/journal.pgen.1007362
  • Gidlöf O. Toward a New paradigm for targeted natriuretic peptide enhancement in heart failure. Front Physiol. 2021;12:650124. doi: 10.3389/fphys.2021.650124
  • Gusterson RJ, Jazrawi E, Adcock IM, et al. The transcriptional co-activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J Biol Chem. 2003 Feb 28;278(9):6838–6847. doi: 10.1074/jbc.M211762200
  • Rosales W, Lizcano F. The histone demethylase JMJD2A modulates the induction of hypertrophy markers in iPSC-Derived cardiomyocytes. Front Genet. 2018;9:14. doi: 10.3389/fgene.2018.00014
  • Kumar P, Tripathi S, Pandey KN. Histone deacetylase inhibitors modulate the transcriptional regulation of guanylyl cyclase/natriuretic peptide receptor-a gene: interactive roles of modified histones, histone acetyltransferase, p300, and Sp1. J Biol Chem. 2014 Mar 7;289(10):6991–7002. doi: 10.1074/jbc.M113.511444
  • Kee HJ, Sohn IS, Nam KI, et al. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation. 2006 Jan 3;113(1):51–59. doi: 10.1161/CIRCULATIONAHA.105.559724
  • Kong Y, Tannous P, Lu G, et al. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation. 2006 Jun 6;113(22):2579–2588. doi: 10.1161/CIRCULATIONAHA.106.625467
  • Gallo P, Latronico MV, Gallo P, et al. Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc Res. 2008 Dec 1;80(3):416–24. doi: 10.1093/cvr/cvn215
  • Xie M, Kong Y, Tan W, et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation. 2014 Mar 11;129(10):1139–1151. doi: 10.1161/CIRCULATIONAHA.113.002416
  • Kumar P, Periyasamy R, Das S, et al. All-trans retinoic acid and sodium butyrate enhance natriuretic peptide receptor a gene transcription: role of histone modification. Mol Pharmacol. 2014 Jun;85(6):946–957. doi: 10.1124/mol.114.092221
  • Solomon SD, Zile M, Pieske B, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012 Oct 20;380(9851):1387–1395. doi: 10.1016/S0140-6736(12)61227-6
  • Gu J, Noe A, Chandra P, et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). J Clin Pharmacol. 2010 Apr;50(4):401–14. doi: 10.1177/0091270009343932
  • McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014 Sep 11;371(11):993–1004. doi: 10.1056/NEJMoa1409077
  • Solomon SD, McMurray JJV, Anand IS, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019 Oct 24;381(17):1609–1620. doi: 10.1056/NEJMoa1908655
  • Nakagawa Y, Nishikimi T, Kuwahara K. Atrial and brain natriuretic peptides: hormones secreted from the heart. Peptides. 2019 Jan;111:18–25. doi: 10.1016/j.peptides.2018.05.012
  • Zhang X, Gu X, Zhang Y, et al. Corin: A Key Mediator in Sodium Homeostasis, Vascular Remodeling, and Heart Failure. Biology. 2022 May 7;11(5):717. doi: 10.3390/biology11050717
  • Zaidi SS, Ward RD, Ramanathan K, et al. Possible enzymatic Downregulation of the natriuretic peptide system in patients with reduced systolic function and heart failure: a Pilot study. Biomed Res Int. 2018;2018:7279036. doi: 10.1155/2018/7279036
  • Gladysheva IP, Sullivan RD, Reed GL. Falling corin and ANP activity levels accelerate development of heart failure and cardiac fibrosis. Front Cardiovasc Med. 2023;10:1120487. doi: 10.3389/fcvm.2023.1120487
  • Tripathi R, Wang D, Sullivan R, et al. Depressed corin levels indicate early systolic dysfunction before increases of atrial natriuretic peptide/B-Type natriuretic peptide and heart failure development. Hypertension. 2016 Feb;67(2):362–367. doi: 10.1161/HYPERTENSIONAHA.115.06300
  • Verstreken S, Delrue L, Goethals M, et al. Natriuretic peptide processing in patients with and without left ventricular dysfunction. Int Heart J. 2019 Jan 25;60(1):115–120. doi: 10.1536/ihj.18-012
  • Langenickel TH, Pagel I, Buttgereit J, et al. Rat corin gene: molecular cloning and reduced expression in experimental heart failure. Am J Physiol Heart Circ Physiol. 2004 Oct;287(4):H1516–21. doi: 10.1152/ajpheart.00947.2003
  • Ichiki T, Boerrigter G, Huntley BK, et al. Differential expression of the pro-natriuretic peptide convertases corin and furin in experimental heart failure and atrial fibrosis. Am J Physiol Regul Integr Comp Physiol. 2013 Jan 15;304(2):R102–9. doi: 10.1152/ajpregu.00233.2012
  • Ngo DT, Horowitz JD, Sverdlov AL. Heart failure: a corin-deficient state? Hypertension. 2013 Feb;61(2):284–5. doi: 10.1161/HYPERTENSIONAHA.112.196253
  • Pang A, Hu Y, Zhou P, et al. Corin is down-regulated and exerts cardioprotective action via activating pro-atrial natriuretic peptide pathway in diabetic cardiomyopathy. Cardiovasc Diabetol. 2015 Oct 7;14(1):134. doi: 10.1186/s12933-015-0298-9
  • Gladysheva IP, Wang D, McNamee RA, et al. Corin overexpression improves cardiac function, heart failure, and survival in mice with dilated cardiomyopathy. Hypertension. 2013 Feb;61(2):327–332. doi: 10.1161/HYPERTENSIONAHA.112.193631
  • Tripathi R, Sullivan RD, Fan TM, et al. Cardiac-specific overexpression of Catalytically inactive corin reduces edema, contractile dysfunction, and death in mice with dilated cardiomyopathy. Int J Mol Sci. 2019 Dec 27;21(1):203. doi: 10.3390/ijms21010203
  • Giannessi D, Del Ry S, Vitale RL. The role of endothelins and their receptors in heart failure. Pharmacol Res. 2001 Feb;43(2):111–126. doi: 10.1006/phrs.2000.0758
  • Kalk P, Sharkovska Y, Kashina E, et al. Endothelin-converting enzyme/neutral endopeptidase inhibitor SLV338 prevents hypertensive cardiac remodeling in a blood pressure-independent manner. Hypertension. 2011 Apr;57(4):755–63. doi: 10.1161/HYPERTENSIONAHA.110.163972
  • Sakai S, Miyauchi T, Yamaguchi I. Long-term endothelin receptor antagonist administration improves alterations in expression of various cardiac genes in failing myocardium of rats with heart failure. Circulation. 2000 Jun 20;101(24):2849–2853. doi: 10.1161/01.CIR.101.24.2849
  • Mulder P, Barbier S, Monteil C, et al. Sustained improvement of cardiac function and prevention of cardiac remodeling after long-term dual ECE-NEP inhibition in rats with congestive heart failure. J Cardiovasc Pharmacol. 2004 Apr;43(4):489–494. doi: 10.1097/00005344-200404000-00003
  • Emoto N, Raharjo SB, Isaka D, et al. Dual ECE/NEP inhibition on cardiac and neurohumoral function during the transition from hypertrophy to heart failure in rats. Hypertension. 2005, Jun;45(6):1145–1152. doi: 10.1161/01.HYP.0000168944.29525.da
  • Seed A, Kuc RE, Maguire JJ, et al. The dual endothelin converting enzyme/neutral endopeptidase inhibitor SLV-306 (daglutril), inhibits systemic conversion of big endothelin-1 in humans. Life Sci. 2012 Oct 15;91(13–14):743–748. doi: 10.1016/j.lfs.2012.03.022
  • Dickstein K, De Voogd HJ, Miric MP, et al. Effect of single doses of SLV306, an inhibitor of both neutral endopeptidase and endothelin-converting enzyme, on pulmonary pressures in congestive heart failure. Am J Cardiol. 2004 Jul 15;94(2):237–239. doi: 10.1016/j.amjcard.2004.03.074
  • Naso MF, Tomkowicz B, Perry WL 3rd, et al. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017 Aug;31(4):317–334. doi: 10.1007/s40259-017-0234-5
  • Zhang H, Zhan Q, Huang B, et al. AAV-mediated gene therapy: advancing cardiovascular disease treatment. Front Cardiovasc Med. 2022;9:952755. doi: 10.3389/fcvm.2022.952755
  • Nguyen GN, Everett JK, Kafle S, et al. A long-term study of AAV gene therapy in dogs with hemophilia a identifies clonal expansions of transduced liver cells. Nat Biotechnol. 2021 Jan;39(1):47–55. doi: 10.1038/s41587-020-0741-7
  • Lin KF, Chao J, Chao L. Human atrial natriuretic peptide gene delivery reduces blood pressure in hypertensive rats. Hypertension. 1995 Dec;26(6 Pt 1):847–53. doi: 10.1161/01.HYP.26.6.847
  • Lin KF, Chao J, Chao L. Atrial natriuretic peptide gene delivery attenuates hypertension, cardiac hypertrophy, and renal injury in salt-sensitive rats. Hum Gene Ther. 1998 Jul 1;9(10):1429–1438. doi: 10.1089/hum.1998.9.10-1429
  • Cataliotti A, Tonne JM, Bellavia D, et al. Long-term cardiac pro-B-type natriuretic peptide gene delivery prevents the development of hypertensive heart disease in spontaneously hypertensive rats. Circulation. 2011 Mar 29;123(12):1297–1305. doi: 10.1161/CIRCULATIONAHA.110.981720
  • Tonne JM, Holditch SJ, Oehler EA, et al. Cardiac BNP gene delivery prolongs survival in aged spontaneously hypertensive rats with overt hypertensive heart disease. Aging. 2014 Apr;6(4):311–319. doi: 10.18632/aging.100655
  • Mariani JA, Smolic A, Preovolos A, et al. Augmentation of left ventricular mechanics by recirculation-mediated AAV2/1-SERCA2a gene delivery in experimental heart failure. Eur J Heart Fail. 2011 Mar;13(3):247–53. doi: 10.1093/eurjhf/hfq234
  • Jaski BE, Jessup ML, Mancini DM, et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID trial), a first-in-human phase 1/2 clinical trial. J Card Fail. 2009 Apr;15(3):171–181. doi: 10.1016/j.cardfail.2009.01.013
  • Jessup M, Greenberg B, Mancini D, et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2±ATPase in patients with advanced heart failure. Circulation. 2011 Jul 19;124(3):304–313. doi: 10.1161/CIRCULATIONAHA.111.022889
  • Greenberg B, Butler J, Felker GM, et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet. 2016 Mar 19;387(10024):1178–1186. doi: 10.1016/S0140-6736(16)00082-9
  • Numata G, Takimoto E. Cyclic GMP and PKG signaling in heart failure. Front Pharmacol. 2022;13:792798. doi: 10.3389/fphar.2022.792798
  • Kansakar S, Guragain A, Verma D, et al. Soluble Guanylate Cyclase Stimulators in Heart Failure. Cureus. 2021 Sep;13(9):e17781. doi: 10.7759/cureus.17781
  • Bonderman D, Pretsch I, Steringer-Mascherbauer R, et al. Acute hemodynamic effects of riociguat in patients with pulmonary hypertension associated with diastolic heart failure (DILATE-1): a randomized, double-blind, placebo-controlled, single-dose study. Chest. 2014 Nov;146(5):1274–1285. doi: 10.1378/chest.14-0106
  • Udelson JE, Lewis GD, Shah SJ, et al. Effect of Praliciguat on peak rate of oxygen consumption in patients with heart failure with preserved ejection fraction: the CAPACITY HFpEF randomized clinical trial. JAMA. 2020 Oct 20;324(15):1522–1531. doi: 10.1001/jama.2020.16641
  • Gheorghiade M, Greene SJ, Butler J, et al. Effect of Vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED randomized trial. JAMA. 2015 Dec 1;314(21):2251–2262. doi: 10.1001/jama.2015.15734
  • Armstrong PW, Pieske B, Anstrom KJ, et al. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med. 2020 May 14;382(20):1883–1893. doi: 10.1056/NEJMoa1915928
  • Chiles R, Al-Horani RA, Tomlinson B. Vericiguat: A New Hope for Heart Failure Patients. Cardiovasc Ther. 2022;2022:1–6. doi: 10.1155/2022/1554875
  • Blanton RM. cGMP signaling and modulation in heart failure. J Cardiovasc Pharmacol. 2020 May;75(5):385–398. doi: 10.1097/FJC.0000000000000749
  • Guazzi M, Vicenzi M, Arena R, et al. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011 Jan;4(1):8–17. doi: 10.1161/CIRCHEARTFAILURE.110.944694
  • Guazzi M, Vicenzi M, Arena R, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011 Jul 12;124(2):164–174. doi: 10.1161/CIRCULATIONAHA.110.983866
  • Redfield MM, Chen HH, Borlaug BA, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013 Mar 27;309(12):1268–1277. doi: 10.1001/jama.2013.2024
  • Methawasin M, Strom J, Borkowski T, et al. Phosphodiesterase 9a inhibition in mouse models of diastolic dysfunction. Circ Heart Fail. 2020 May;13(5):e006609. doi: 10.1161/CIRCHEARTFAILURE.119.006609
  • Richards DA, Aronovitz MJ, Liu P, et al. CRD-733, a novel PDE9 (phosphodiesterase 9) inhibitor, reverses pressure overload-induced heart failure. Circ Heart Fail. 2021 Jan;14(1):e007300. doi: 10.1161/CIRCHEARTFAILURE.120.007300
  • McMurray JJV, Docherty KF. Phosphodiesterase-9 inhibition in heart failure: a further opportunity to augment the effects of natriuretic peptides? J Am Coll Cardiol. 2019 Aug 20;74(7):902–904. doi: 10.1016/j.jacc.2019.07.008
  • Alzahri MS, Rohra A, Peacock WF. Nitrates as a Treatment of Acute Heart Failure. Card Fail Rev. 2016, May;2(1):51–55. doi: 10.15420/cfr.2016:3:3
  • Loeb HS, Johnson G, Henrick A, et al. Effect of enalapril, hydralazine plus isosorbide dinitrate, and prazosin on hospitalization in patients with chronic congestive heart failure. The V-HeFT VA Cooperative studies group. Circulation. 1993 Jun;87(6 Suppl):Vi78–87.
  • Taylor AL, Ziesche S, Yancy C, et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med. 2004 Nov 11;351(20):2049–2057. doi: 10.1056/NEJMoa042934
  • Blanton RM, Takimoto E, Lane AM, et al. Protein kinase g iα inhibits pressure overload-induced cardiac remodeling and is required for the cardioprotective effect of sildenafil in vivo. J Am Heart Assoc. 2012, Oct;1(5):e003731. doi: 10.1161/JAHA.112.003731
  • Nakamura T, Ranek MJ, Lee DI, et al. Prevention of PKG1α oxidation augments cardioprotection in the stressed heart. J Clin Invest. 2015, Jun;125(6):2468–2472. doi: 10.1172/JCI80275
  • Nogi K, Ueda T, Matsue Y, et al. Effect of carperitide on the 1 year prognosis of patients with acute decompensated heart failure. ESC Heart Fail. 2022, Apr;9(2):1061–1070. doi: 10.1002/ehf2.13770
  • Nomura F, Kurobe N, Mori Y, et al. Multicenter prospective investigation on efficacy and safety of carperitide as a first-line drug for acute heart failure syndrome with preserved blood pressure: COMPASS: carperitide effects observed through monitoring dyspnea in acute decompensated heart failure study. Circ J. 2008, Nov;72(11):1777–1786. doi: 10.1253/circj.cj-07-0760
  • Hata N, Seino Y, Tsutamoto T, et al. Effects of carperitide on the long-term prognosis of patients with acute decompensated chronic heart failure: the PROTECT multicenter randomized controlled study. Circ J. 2008, Nov;72(11):1787–93. doi: 10.1253/circj.CJ-08-0130
  • Matsue Y, Kagiyama N, Yoshida K, et al. Carperitide is associated with increased in-Hospital mortality in acute heart failure: a propensity score-matched analysis. J Card Fail. 2015, Nov;21(11):859–64. doi: 10.1016/j.cardfail.2015.05.007
  • Mills RM, LeJemtel TH, Horton DP, et al. Sustained hemodynamic effects of an infusion of nesiritide (human b-type natriuretic peptide) in heart failure: a randomized, double-blind, placebo-controlled clinical trial Natrecor Study Group. J Am Coll Cardiol. 1999, Jul;34(1):155–62. doi: 10.1016/S0735-1097(99)00184-9
  • Colucci WS, Elkayam U, Horton DP, et al. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure Nesiritide Study Group. N Engl J Med. 2000 Jul 27;343(4):246–253. doi: 10.1056/NEJM200007273430403
  • Meems LMG, Burnett JC Jr. Innovative therapeutics: Designer Natriuretic Peptides. JACC Basic Transl Sci. 2016, Dec;1(7):557–567. doi: 10.1016/j.jacbts.2016.10.001
  • O’Connor CM, Starling RC, Hernandez AF, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011 Jul 7;365(1):32–43. doi: 10.1056/NEJMoa1100171
  • Chen HH, Glockner JF, Schirger JA, et al. Novel protein therapeutics for systolic heart failure: chronic subcutaneous B-type natriuretic peptide. J Am Coll Cardiol. 2012 Dec 4;60(22):2305–2312. doi: 10.1016/j.jacc.2012.07.056
  • Martin FL, Sangaralingham SJ, Huntley BK, et al. CD-NP: a novel engineered dual guanylyl cyclase activator with anti-fibrotic actions in the heart. PLoS One. 2012;7(12):e52422.
  • Lisy O, Huntley BK, McCormick DJ, et al. Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP. J Am Coll Cardiol. 2008 Jul 1;52(1):60–68. doi: 10.1016/j.jacc.2008.02.077
  • Lee CY, Chen HH, Lisy O, et al. Pharmacodynamics of a novel designer natriuretic peptide, CD-NP, in a first-in-human clinical trial in healthy subjects. J Clin Pharmacol. 2009, Jun;49(6):668–73. doi: 10.1177/0091270009336233
  • Kawakami R, Lee CYW, Scott C, et al. A human study to evaluate safety, tolerability, and cyclic GMP activating properties of Cenderitide in subjects with stable chronic heart failure. Clin Pharmacol Ther. 2018, Sep;104(3):546–552. doi: 10.1002/cpt.974
  • McKie PM, Cataliotti A, Boerrigter G, et al. A novel atrial natriuretic peptide based therapeutic in experimental angiotensin II mediated acute hypertension. Hypertension. 2010, Dec;56(6):1152–1159. doi: 10.1161/HYPERTENSIONAHA.110.159210
  • McKie PM, Cataliotti A, Ichiki T, et al. M-atrial natriuretic peptide and nitroglycerin in a canine model of experimental acute hypertensive heart failure: differential actions of 2 cGMP activating therapeutics. J Am Heart Assoc. 2014 Jan 2;3(1):e000206. doi: 10.1161/JAHA.113.000206
  • Chen HH, Neutel JM, Smith DH, et al. ZD100 a novel particulate-guanylyl-cyclase a receptor activator in human resistant “like” hypertension—A first in human study. J Card Fail. 2016;22(8):S33.
  • Pan S, Chen HH, Dickey DM, et al. Biodesign of a renal-protective peptide based on alternative splicing of B-type natriuretic peptide. Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11282–11287. doi: 10.1073/pnas.0811851106
  • Seok HY, Chen J, Kataoka M, et al. Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy. Circ Res. 2014 May 9;114(10):1585–1595. doi: 10.1161/CIRCRESAHA.114.303784
  • Arora P, Wu C, Khan AM, et al. Atrial natriuretic peptide is negatively regulated by microRNA-425. J Clin Invest. 2013, Aug;123(8):3378–3382. doi: 10.1172/JCI67383
  • Batkai S, Genschel C, Viereck J, et al. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. Eur Heart J. 2021 Jan 7;42(2):192–201. doi: 10.1093/eurheartj/ehaa791
  • Täubel J, Hauke W, Rump S, et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J. 2021 Jan 7;42(2):178–188. doi: 10.1093/eurheartj/ehaa898
  • Huang XH, Li JL, Li XY, et al. miR-208a in cardiac hypertrophy and remodeling. Front Cardiovasc Med. 2021;8:773314. doi: 10.3389/fcvm.2021.773314
  • Celik S, Sadegh MK, Morley M, et al. Antisense regulation of atrial natriuretic peptide expression. JCI Insight. 2019 Oct 3;4(19). doi: 10.1172/jci.insight.130978
  • Luna C, Li G, Qiu J, et al. MicroRNA-24 regulates the processing of latent TGFβ1 during cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN. J Cell Physiol. 2011, May;226(5):1407–1414. doi: 10.1002/jcp.22476
  • Wang X, Huang W, Liu G, et al. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol. 2014 Sep;74:139–150
  • Vegter EL, van der Meer P, de Windt LJ, et al. MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail. 2016 May;18(5):457–468. doi: 10.1002/ejhf.495

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.