194
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Islatravir: evaluation of clinical development for HIV and HBV

, , , , , & show all
Pages 85-93 | Received 08 Oct 2023, Accepted 10 Jan 2024, Published online: 26 Jan 2024

References

  • Palella FJ Jr., Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection HIV outpatient study investigators. N Engl J Med. 1998 Mar 26;338(13):853–860. doi: 10.1056/NEJM199803263381301
  • Group ISS, Lundgren JD, Babiker AG, et al. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med. 2015 Aug 27;373(9):795–807.
  • Vernazza P, Hirschel B, Bernasconi E, et al. Les personnes seropositives ne souffrant d’aucune autre MST et suivant un traitement antiretroviral efficace ne transmettent pas le VIH voie sexuelle. Bulletin des Medecins Suisses. 2008;89(5):165–169.
  • Cohen MS, Chen YQ, McCauley M, et al. Antiretroviral therapy for the prevention of HIV-1 transmission. N Engl J Med. 2016 Sep 1;375(9):830–9. doi: 10.1056/NEJMoa1600693
  • Rodger AJ, Cambiano V, Bruun T, et al. Risk of HIV transmission through condomless sex in serodifferent gay couples with the HIV-positive partner taking suppressive antiretroviral therapy (PARTNER): final results of a multicentre, prospective, observational study. Lancet. 2019 Jun 15;393(10189):2428–2438. doi: 10.1016/S0140-6736(19)30418-0
  • Rodger AJ, Cambiano V, Bruun T, et al. Sexual activity without condoms and risk of HIV transmission in serodifferent couples when the HIV-Positive partner is using suppressive antiretroviral therapy. JAMA. 2016 Jul 12;316(2):171–81. doi: 10.1001/jama.2016.5148
  • Michailidis E, Marchand B, Kodama EN, et al. Mechanism of inhibition of HIV-1 reverse transcriptase by 4’-ethynyl-2-fluoro-2’-deoxyadenosine triphosphate, a translocation-defective reverse transcriptase inhibitor. J Biol Chem. 2009 Dec 18;284(51):35681–35691. doi: 10.1074/jbc.M109.036616
  • Schurmann D, Rudd DJ, Zhang S, et al. Safety, pharmacokinetics, and antiretroviral activity of islatravir (ISL, MK-8591), a novel nucleoside reverse transcriptase translocation inhibitor, following single-dose administration to treatment-naive adults infected with HIV-1: an open-label, phase 1b, consecutive-panel trial. Lancet HIV. 2020, Mar;7(3):e164–e172.
  • Molina JM, Yazdanpanah Y, Afani Saud A, et al. Brief report: efficacy and safety of oral islatravir Once daily in combination with doravirine through 96 weeks for treatment-naive adults with HIV-1 infection receiving initial treatment with islatravir, doravirine, and lamivudine. J Acquir Immune Defic Syndr. 2022 Sep 1;91(1):68–72. doi: 10.1097/QAI.0000000000002879
  • Lai MT, Feng M, Xu M, et al. Doravirine and islatravir have complementary resistance profiles and create a combination with a high barrier to resistance. Antimicrob Agents Chemother. 2022 May 17;66(5): e0222321. doi: 10.1128/aac.02223-21
  • Yamaguchi R, Imanishi T, Kohgo S, et al. Synthesis of 4’-C-Ethynyl-beta-D-ribo-pentofuranosyl pyrimidines. Biosci Biotechnol Biochem. 1999;63(4):736–742. doi: 10.1271/bbb.63.736
  • Kohgo S, Horie H, Ohrui H. Synthesis of 4’-C-ethynyl-beta-D-arabino- and 4’-C-ethynyl-2’-deoxy-beta- D-ribo-pentofuranosyl pyrimidines, and their biological evaluation. Biosci Biotechnol Biochem. 1999 Jun;63(6):1146–1149. doi: 10.1271/bbb.63.1146
  • Kitano K, Sakata S, Kohgo S, et al. Synthesis of 4’-ethynyl-purine nucleosides possessing anti-HIV activity. Nucleic Acids Symp Ser. 2000;44(1):105–6. doi: 10.1093/nass/44.1.105
  • Ohrui H, Kohgo S, Kitano K, et al. Syntheses of 4’-C-ethynyl-beta-D-arabino- and 4’-C-ethynyl-2’-deoxy-beta-D-ribo-pentofuranosylpyrimidines and -purines and evaluation of their anti-HIV activity. J Med Chem. 2000 Nov 16;43(23):4516–25. doi: 10.1021/jm000209n
  • Ohrui H, Mitsuya H. 4’-C-substituted-2’-deoxynucleosides: a family of antiretroviral agents which are potent against drug-resistant HIV variants. Curr Drug Targets Infect Disord. 2001 May;1(1):1–10. doi: 10.2174/1568005013343218
  • Kodama EI, Kohgo S, Kitano K, et al. 4’-Ethynyl nucleoside analogs: potent inhibitors of multidrug-resistant human immunodeficiency virus variants in vitro. Antimicrob Agents Chemother. 2001 May;45(5):1539–1546. doi: 10.1128/AAC.45.5.1539-1546.2001
  • Ohrui H. 2’-deoxy-4’-C-ethynyl-2-fluoroadenosine, a nucleoside reverse transcriptase inhibitor, is highly potent against all human immunodeficiency viruses type 1 and has low toxicity. Chem Rec. 2006;6(3):133–143. doi: 10.1002/tcr.20078
  • Ohrui H, Kohgo S, Hayakawa H, et al. 2´-deoxy-4´-C-ethynyl-2-fluoroadenosine: a nucleoside reverse transcriptase inhibitor with highly potent activity against all HIV-1 strains, favorable toxic profiles and stability in plasma. Nucleic Acids Symp Ser (Oxf). 2006;50(1):1–2. doi: 10.1093/nass/nrl001
  • Ohrui H, Kohgo S, Hayakawa H, et al. 2’-deoxy-4’-C-ethynyl-2-fluoroadenosine: a nucleoside reverse transcriptase inhibitor with highly potent activity against wide spectrum of HIV-1 strains, favorable toxic profiles, and stability in plasma. Nucleosides Nucleotides Nucleic Acids. 2007;26(10–12):1543–6. doi: 10.1080/15257770701545218
  • Kawamoto A, Kodama E, Sarafianos SG, et al. 2’-deoxy-4’-C-ethynyl-2-halo-adenosines active against drug-resistant human immunodeficiency virus type 1 variants. Int J Biochem Cell Biol. 2008;40(11):2410–2420. doi: 10.1016/j.biocel.2008.04.007
  • Sohl CD, Singh K, Kasiviswanathan R, et al. Mechanism of interaction of human mitochondrial DNA polymerase gamma with the novel nucleoside reverse transcriptase inhibitor 4’-ethynyl-2-fluoro-2’-deoxyadenosine indicates a low potential for host toxicity. Antimicrob Agents Chemother. 2012 Mar;56(3):1630–1634. doi: 10.1128/AAC.05729-11
  • Michailidis E, Ryan EM, Hachiya A, et al. Hypersusceptibility mechanism of tenofovir-resistant HIV to EFdA. Retrovirology. 2013 Jun 24;10(1):65. doi: 10.1186/1742-4690-10-65
  • Michailidis E, Huber AD, Ryan EM, et al. 4’-ethynyl-2-fluoro-2’-deoxyadenosine (EFdA) inhibits HIV-1 reverse transcriptase with multiple mechanisms. J Biol Chem. 2014 Aug 29;289(35):24533–48. doi: 10.1074/jbc.M114.562694
  • Salie ZL, Kirby KA, Michailidis E, et al. Structural basis of HIV inhibition by translocation-defective RT inhibitor 4’-ethynyl-2-fluoro-2’-deoxyadenosine (EFdA). Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9274–9279. doi: 10.1073/pnas.1605223113
  • Hattori S, Ide K, Nakata H, et al. Potent activity of a nucleoside reverse transcriptase inhibitor, 4’-ethynyl-2-fluoro-2’-deoxyadenosine, against human immunodeficiency virus type 1 infection in a model using human peripheral blood mononuclear cell-transplanted NOD/SCID Janus kinase 3 knockout mice. Antimicrob Agents Chemother. 2009, Sep;53(9):3887–93.
  • Murphey-Corb M, Rajakumar P, Michael H, et al. Response of simian immunodeficiency virus to the novel nucleoside reverse transcriptase inhibitor 4’-ethynyl-2-fluoro-2’-deoxyadenosine in vitro and in vivo. Antimicrob Agents Chemother. 2012 Sep;56(9):4707–4712. doi: 10.1128/AAC.00723-12
  • Stoddart CA, Galkina SA, Joshi P, et al. Oral administration of the nucleoside EFdA (4’-ethynyl-2-fluoro-2’-deoxyadenosine) provides rapid suppression of HIV viremia in humanized mice and favorable pharmacokinetic properties in mice and the rhesus macaque. Antimicrob Agents Chemother. 2015 Jul;59(7):4190–4198.
  • Zhang W, Parniak MA, Sarafianos SG, et al. In vitro transport characteristics of EFdA, a novel nucleoside reverse transcriptase inhibitor using caco-2 and MDCKII cell monolayers. Eur J Pharmacol. 2014 Jun 5;732:86–95. doi: 10.1016/j.ejphar.2014.03.022
  • Shanmugasundaram U, Kovarova M, Ho PT, et al. Efficient inhibition of HIV replication in the gastrointestinal and female reproductive tracts of humanized BLT mice by EFdA. PLoS One. 2016;11(7):e0159517. doi: 10.1371/journal.pone.0159517
  • Kovarova M, Shanmugasundaram U, Baker CE, et al. HIV pre-exposure prophylaxis for women and infants prevents vaginal and oral HIV transmission in a preclinical model of HIV infection. J Antimicrob Chemother. 2016 Nov;71(11):3185–3194.
  • Tieu HV, Taylor BS, Jones J, et al. CROI 2018: advances in antiretroviral therapy. Top Antivir Med. 2018 May;26(1):40–53.
  • Matthews RP, Ankrom W, Friedman E, et al. Safety, tolerability, and pharmacokinetics of single- and multiple-dose administration of islatravir (MK-8591) in adults without HIV. Clin Transl Sci. 2021 Sep;14(5):1935–1944.
  • Matthews RP, Jackson Rudd D, Zhang S, et al. Safety and pharmacokinetics of once-daily multiple-dose administration of Islatravir in adults without HIV. J Acquir Immune Defic Syndr. 2021 Nov 1;88(3):314–321. doi: 10.1097/QAI.0000000000002755
  • Grobler JA, Lai M-T, Barrett SE, et al. Long-acting oral and parenteral dosing of MK-8591 for HIV treatment or prophylaxis. Conference on Retroviruses and Opportunistic Infections (CROI); Boston (MA):CROI; 2016. https://natap.org/2016/CROI/croi_14.htm
  • Rudd DJ, Zhang S, Fillgrove KL, et al. Lack of a clinically meaningful drug interaction between the HIV-1 antiretroviral agents islatravir, Dolutegravir, and Tenofovir Disoproxil Fumarate. Clin Pharmacol Drug Dev. 2021 Dec;10(12):1432–1441.
  • Matthews RP, Jackson Rudd D, Fillgrove KL, et al. A phase 1 study to evaluate the drug interaction between islatravir (MK-8591) and doravirine in adults without HIV. Clin Drug Investig. 2021 Jul;41(7):629–638.
  • Molina JM, Yazdanpanah Y, Afani Saud A, et al. Islatravir in combination with doravirine for treatment-naive adults with HIV-1 infection receiving initial treatment with islatravir, doravirine, and lamivudine: a phase 2b, randomised, double-blind, dose-ranging trial. Lancet HIV. 2021 Jun;8(6):e324–e333.
  • Diamond TL, Ngo W, Xu M, et al. Islatravir Has a high barrier to resistance and exhibits a differentiated resistance profile from approved nucleoside reverse transcriptase inhibitors (NRTIs). Antimicrob Agents Chemother. 2022 Jun 21;66(6):e0013322. doi: 10.1128/aac.00133-22
  • Singh K, Flores JA, Kirby KA, et al. Drug resistance in non-B subtype HIV-1: impact of HIV-1 reverse transcriptase inhibitors. Viruses. 2014 Sep 24;6(9):3535–62. doi: 10.3390/v6093535
  • Betancor G, Nevot M, Mendieta J, et al. Molecular basis of the association of H208Y and thymidine analogue resistance mutations M41L, L210W and T215Y in the HIV-1 reverse transcriptase of treated patients. Antiviral Res. 2014 Jun;106:42–52.
  • Menendez-Arias L, Betancor G, Matamoros T. HIV-1 reverse transcriptase connection subdomain mutations involved in resistance to approved non-nucleoside inhibitors. Antiviral Research. 2011 Nov;92(2):139–149. doi: 10.1016/j.antiviral.2011.08.020
  • Wright DW, Deuzing IP, Flandre P, et al. A polymorphism at position 400 in the connection subdomain of HIV-1 reverse transcriptase affects sensitivity to NNRTIs and RNaseH activity. PLoS One. 2013;8(10):e74078. doi: 10.1371/journal.pone.0074078
  • Hutapea HML, Kridaningsih TN, Prasetyo KH, et al. Viral load as a risk factor of reverse transcriptase inhibitor drug resistance mutation in antiretroviral-treated people living with HIV/AIDS. Universa Medicina. 2021 Nov 30;40(3):243–253.
  • Santos AF, Silveira J, Muniz CP, et al. Primary HIV-1 drug resistance in the C-terminal domains of viral reverse transcriptase among drug-naive patients from Southern Brazil. J Clin Virol. 2011 Dec;52(4):373–376.
  • Delviks-Frankenberry KA, Nikolenko GN, Maldarelli F, et al. Subtype-specific differences in the human immunodeficiency virus type 1 reverse transcriptase connection subdomain of CRF01_AE are associated with higher levels of resistance to 3’-azido-3’-deoxythymidine. J Virol. 2009 Sep;83(17):8502–13.
  • Tanuma J, Hachiya A, Ishigaki K, et al. Impact of CRF01_AE-specific polymorphic mutations G335D and A371V in the connection subdomain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) on susceptibility to nucleoside RT inhibitors. Microbes Infect. 2010 Dec;12(14–15):1170–7.
  • Huang H, Chopra R, Verdine GL, et al. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science. 1998 Nov 27;282(5394):1669–75. doi: 10.1126/science.282.5394.1669
  • Van Cor-Hosmer SK, Daddacha W, Kelly Z, et al. The impact of molecular manipulation in residue 114 of human immunodeficiency virus type-1 reverse transcriptase on dNTP substrate binding and viral replication. Virology. 2012 Jan 20;422(2):393–401. doi: 10.1016/j.virol.2011.11.004
  • Sluis-Cremer N, Arion D, Parniak MA. Molecular mechanisms of HIV-1 resistance to nucleoside reverse transcriptase inhibitors (NRTIs). Cell Mol Life Sci. 2000 Sep;57(10):1408–22. doi: 10.1007/PL00000626
  • Menendez-Arias L. Mechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase. Virus Res. 2008 Jun;134(1–2):124–46. doi: 10.1016/j.virusres.2007.12.015
  • Broquetas T, Carrion JA. Past, present, and future of long-term treatment for hepatitis B virus. World J Gastroenterol. 2023 Jul 7;29(25):3964–3983. doi: 10.3748/wjg.v29.i25.3964
  • Terrault NA, Lok ASF, McMahon BJ, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology. 2018 Apr;67(4):1560–1599.
  • Sarin SK, Kumar M, Lau GK, et al. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update. Hepatol Int. 2016 Jan;10(1):1–98.
  • Lampertico P, Agarwal K, Berg T, et al. Electronic address eee, European association for the study of the L. EASL 2017 clinical practice guidelines on the management of hepatitis B virus infection. J Hepatol. 2017 Aug;67(2):370–398.
  • Levine S, Hernandez D, Yamanaka G, et al. Efficacies of entecavir against lamivudine-resistant hepatitis B virus replication and recombinant polymerases in vitro. Antimicrob Agents Chemother. 2002 Aug;46(8):2525–32.
  • Mokaya J, Maponga TG, McNaughton AL, et al. Evidence of tenofovir resistance in chronic hepatitis B virus (HBV) infection: an observational case series of South African adults. J Clin Virol. 2020 Aug;129:104548.
  • Heathcote EJ, Marcellin P, Buti M, et al. Three-year efficacy and safety of tenofovir disoproxil fumarate treatment for chronic hepatitis B. Gastroenterology. 2011 Jan;140(1):132–43.
  • Petersen J, Heyne R, Mauss S, et al. Effectiveness and safety of tenofovir disoproxil fumarate in chronic hepatitis B: a 3-year prospective field practice study in Germany. Dig Dis Sci. 2016 Oct;61(10):3061–3071.
  • Marcellin P, Gane E, Buti M, et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet. 2013 Feb 9;381(9865):468–75. doi: 10.1016/S0140-6736(12)61425-1
  • Takamatsu Y, Tanaka Y, Kohgo S, et al. 4’-modified nucleoside analogs: potent inhibitors active against entecavir-resistant hepatitis B virus. Hepatology. 2015 Oct;62(4):1024–1036. doi: 10.1002/hep.27962
  • Matthews RP, Cao Y, Patel M, et al. Safety and pharmacokinetics of Islatravir in individuals with severe renal insufficiency. Antimicrob Agents Chemother. 2022 Dec 20;66(12):e0093122. doi: 10.1128/aac.00931-22
  • Prevention access campaign. Undetectable=Untransmittable. 2016. https://www.preventionaccess.org/undetectable.
  • Link JO, Rhee MS, Tse WC, et al. Clinical targeting of HIV capsid protein with a long-acting small molecule. Nature. 2020, Aug;584(7822):614–618.
  • Paik J. Lenacapavir: First Approval. Drugs. 2022 Sep;82(14):1499–1504. doi: 10.1007/s40265-022-01786-0
  • Paik J. Correction to: Lenacapavir: first approval. Drugs. 2023 Jul;83(11):1061. doi: 10.1007/s40265-023-01908-2
  • Wensing AM, Calvez V, Ceccherini-Silberstein F, et al. 2022 update of the drug resistance mutations in HIV-1. Top Antivir Med. 2022 Oct;30(4):559–574.
  • Brenner BG. Resistance and viral subtypes: how important are the differences and why do they occur? Curr Opin HIV AIDS. 2007 Mar;2(2):94–102. doi: 10.1097/COH.0b013e32801682e2
  • Kantor R, Katzenstein DA, Efron B, et al. Impact of HIV-1 subtype and antiretroviral therapy on protease and reverse transcriptase genotype: results of a global collaboration. PLoS Med. 2005 Apr;2(4):e112.
  • Kantor R, Katzenstein D. Polymorphism in HIV-1 non-subtype B protease and reverse transcriptase and its potential impact on drug susceptibility and drug resistance evolution. AIDS Rev. 2003 Jan;5(1):25–35.
  • Yap SH, Herman BD, Radzio J, et al. N348I in HIV-1 reverse transcriptase counteracts the synergy between zidovudine and nevirapine. J Acquir Immune Defic Syndr. 2012 Oct 1;61(2):153–7. doi: 10.1097/QAI.0b013e3182657990
  • Hachiya A, Shimane K, Sarafianos SG, et al. Clinical relevance of substitutions in the connection subdomain and RNase H domain of HIV-1 reverse transcriptase from a cohort of antiretroviral treatment-naive patients. Antiviral Res. 2009 Jun;82(3):115–121. PMCID: PMC3481171. doi:10.1016/j.antiviral.2009.02.189
  • Higashi-Kuwata N, Hayashi S, Das D, et al. CMCdG, a novel nucleoside analog with favorable safety features, exerts potent activity against wild-type and entecavir-resistant hepatitis B virus. Antimicrob Agents Chemother. 2019 Apr;63(4). doi: 10.1128/AAC.02143-18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.