377
Views
0
CrossRef citations to date
0
Altmetric
Review

Investigational thymic stromal lymphopoietin inhibitors for the treatment of asthma: a systematic review

ORCID Icon, , , & ORCID Icon
Pages 39-49 | Received 04 Oct 2023, Accepted 10 Jan 2024, Published online: 17 Jan 2024

References

  • GINA-2023-Full-Report-2023. n.d. [cited 2023 Jun 25]. Available from: https://ginasthma.org/2023-gina-main-report/
  • Hekking PPW, Wener RR, Amelink M, et al. The prevalence of severe refractory asthma. J Allergy Clin Immunol. 2015;135(4):896–902. doi: 10.1016/j.jaci.2014.08.042
  • Rogliani P, Calzetta L, Matera MG, et al. Severe asthma and biological therapy: when, which, and for whom. Pulm Ther. 2020;6(1):47–66. doi: 10.1007/s41030-019-00109-1
  • Calzetta L, Matera MG, Coppola A, et al. Prospects for severe asthma treatment. Curr Opin Pharmacol. 2021;56:52–60. doi: 10.1016/j.coph.2020.10.021
  • Brusselle GG, Maes T, Bracke KR. Eosinophils in the spotlight: Eosinophilic airway inflammation in nonallergic asthma. Nat Med. 2013;19(8):977–979. doi: 10.1038/nm.3300
  • Gauvreau GM, Bergeron C, Boulet LP, et al. Sounding the alarmins—the role of alarmin cytokines in asthma. Allergy. 2023;78(2):402–417. doi: 10.1111/all.15609
  • Matera MG, Rogliani P, Calzetta L, et al. TSLP inhibitors for asthma: Current status and future prospects. Drugs. 2020;80(5):449–458. doi: 10.1007/s40265-020-01273-4
  • Menzies-Gow A, Colice G, Griffiths JM, et al. NAVIGATOR: a phase 3 multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the efficacy and safety of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir Res. 2020;21(1). doi: 10.1186/s12931-020-01526-6
  • Theofani E, Tsitsopoulou A, Morianos I, et al. Severe asthmatic responses: the impact of TSLP. Int J Mol Sci. 2023;24(8):7581. doi: 10.3390/ijms24087581
  • Kabata H, Moro K, Fukunaga K, et al. Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat Commun. 2013;4(1). doi: 10.1038/ncomms3675
  • Calzetta L, Aiello M, Frizzelli A, et al. The impact of monoclonal antibodies on airway smooth muscle contractility in asthma: a systematic review. Biomedicines. 2021;9(9):1281. doi: 10.3390/biomedicines9091281
  • Van Norman GA. Drugs and devices: comparison of European and U.S. Approval processes. JACC Basic Transl Sci. 2016;1(5):399–412. doi: 10.1016/j.jacbts.2016.06.003
  • European Medicines Agency (EMA). Guideline good clinical practice E6(R2). Committee for Human Medicinal Products; 2018. p. 6. https://www.ema.europa.eu/en/ich-e6-r2-good-clinical-practice-scientific-guideline
  • Understanding Investigational Drugs FDA. n.d. [cited 2023 Sep 23]. Available from: https://www.fda.gov/patients/learn-about-expanded-access-and-other-treatment-options/understanding-investigational-drugs
  • Calzetta L, Aiello M, Frizzelli A, et al. Investigational treatments in phase I and II clinical trials: a systematic review in asthma. Biomedicines. 2022;10(9):2330. doi: 10.3390/biomedicines10092330
  • Hoy SM. Tezepelumab: first approval. Drugs. 2022;82(4):461–468. doi: 10.1007/s40265-022-01679-2
  • Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med. 2021;384(19):1800–1809. doi: 10.1056/NEJMoa2034975
  • Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1). doi: 10.1186/2046-4053-4-1
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.
  • Schardt C, Adams MB, Owens T, et al. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med Inform Decis Mak. 2007;7(1). doi: 10.1186/1472-6947-7-16
  • Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1–12. doi: 10.1016/0197-2456(95)00134-4
  • Gauvreau GM, Hohlfeld JM, Mark FitzGerald J, et al. Inhaled anti-TSLP antibody fragment, ecleralimab, blocks responses to allergen in mild asthma. Eur Respir J. 2023;61(3):2201193. doi: 10.1183/13993003.01193-2022
  • Tian X, Zhang X. Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody TQC2731 targeting thymic stromal lymphopoietin in healthy adults: a first-in-human, randomized, placebo-controlled, double-blind, phase 1 study. J Allergy Clin Immunol. 2023;151(2):AB20.
  • Sanofi. NCT05366764 first-in-human study of SAR443765 in healthy participants and in asthmatic participants. [cited 2023 Sep 22]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05366764
  • Deiteren A, Krupka E, Imberdis K, et al. Targeting of TSLP and IL-13 by the Novel NANOBODY® Molecule SAR443765 Reduces FeNO in asthma following single dose exposure. Am Thorac Soc Int Conf Meet Abstr. 2023.
  • Deiteren A, Krupka E, Imberdis K, et al. Early improvement in asthma small airway dysfunction after one dose of SAR443765 a novel bispecific anti-thymic stromal lymphopoietin/anti-IL-13 nanobody molecule. [cited 2023 Sep 24]. Available from: https://erj.ersjournals.com/content/62/suppl_67/OA4296
  • Deykin A, Brinkman C, Becker O. A phase 1 first-in-human single ascending-dose study with a novel antibody to the human thymic stromal lymphopoietin receptor. Am J Respir Crit Care Med. 2023. cited 2023 Sep 24 Available from: https://www.atsjournals.org/doi/epdf/10.1164/ajrccm-conference.2023.207.1_MeetingAbstracts.A3013?role=tab
  • Zheng J, Zhang T, Cheng Z. 2022. NCT05472324 efficacy and safety of TQC2731 injection in patients with severe asthma. [cited 2023 Sep 22]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05472324?cond=NCT05472324&draw=2&rank=1
  • Brickman C, NCT05448651 safety and biologic impact (pharmacodynamics) of repeated injections and increasing amounts of UPB-101 in asthmatics. [cited 2023 Sep 22]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05448651?cond=NCT05448651&draw=2&rank=1
  • Brickman C. NCT05653479 safety and blood levels after a single injection of UPB-101 in healthy Japanese and non-japanese non-east asian adults. [cited 2023 Sep 22]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05653479?cond=NCT05653479&draw=2&rank=1
  • Diagnosis and management of difficult-to-treat & severe asthma - global initiative for asthma - GINA. (n.d). [cited 2023 Sep 23]. Available rom: https://ginasthma.org/severeasthma/
  • Matera MG, Calzetta L, Rogliani P, et al. Monoclonal antibodies for severe asthma: pharmacokinetic profiles. Respir med. 2019;153:3–13. doi: 10.1016/j.rmed.2019.05.005
  • Laitano R, Calzetta L, Cavalli F, et al. Delivering monoclonal antibodies via inhalation: a systematic review of clinical trials in asthma and COPD. Expert Opin Drug Delivery. 2023;20(8):1041–1054. doi: 10.1080/17425247.2023.2228681
  • Shikotra A, Choy DF, Ohri CM, et al. Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol. 2012;129(1):104–111.e9. doi: 10.1016/j.jaci.2011.08.031
  • Venkataramani S, Low S, Weigle B, et al. Design and characterization of Zweimab and Doppelmab, high affinity dual antagonistic anti-TSLP/IL13 bispecific antibodies. Biochem Biophys Res Commun. 2018;504(1):19–24. doi: 10.1016/j.bbrc.2018.08.064
  • Power CA, Bates A. David vs. Goliath: the structure, function, and clinical prospects of antibody fragments. Antibodies. 2019;8(2):28. doi: 10.3390/antib8020028
  • Kunz S, Durandy M, Seguin L, et al. NANOBODY® Molecule, a Giga Medical Tool in Nanodimensions. Int J Mol Sci. 2023;24(17):13229.
  • Tang Y, Cain P, Anguiano V, et al. Impact of IgG subclass on molecular properties of monoclonal antibodies. MAbs. 2021;13(1). doi: 10.1080/19420862.2021.1993768
  • Cain P, Huang L, Tang Y, et al. Impact of IgG subclass on monoclonal antibody developability. MAbs. 2023;15(1). doi: 10.1080/19420862.2023.2191302
  • Sakamoto K, Matsuki S, Irie S, et al. A phase 1, randomized, placebo-controlled study to evaluate the safety, tolerability, pharmacokinetics, and immunogenicity of subcutaneous tezepelumab in healthy Japanese men. Clin Pharmacol Drug Dev. 2020;9(7):833–840. doi: 10.1002/cpdd.775
  • Nakajima S, Kabata H, Kabashima K, et al. Anti-TSLP antibodies: targeting a master regulator of type 2 immune responses, Allergol. Int. 2020;69(2):197–203. doi: 10.1016/j.alit.2020.01.001
  • Shi L, Leu SW, Xu F, et al. Local blockade of TSLP receptor alleviated allergic disease by regulating airway dendritic cells. Clin Immunol. 2008;129.
  • Sverrild A, Hansen S, Hvidtfeldt M, et al. The effect of tezepelumab on airway hyperresponsiveness to mannitol in asthma (UPSTREAM. Eur Respir J. 2022;59(1):2101296. doi: 10.1183/13993003.01296-2021
  • Diver S, Khalfaoui L, Emson C, et al. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med. 2021;9(11):1299–1312. doi: 10.1016/S2213-2600(21)00226-5
  • Emson C, Corren J, Sałapa K, et al. Efficacy of tezepelumab in patients with severe, uncontrolled asthma with and without nasal polyposis: a post hoc analysis of the phase 2b pathway study. J Asthma Allergy. 2021;14:91–99. doi: 10.2147/JAA.S288260
  • Corren J, Ambrose CS, Sałapa K, et al. Efficacy of tezepelumab in patients with severe, uncontrolled asthma and perennial allergy. J Allergy Clin Immunol. 2021;9(12):4334–4342.e6. doi: 10.1016/j.jaip.2021.07.045
  • Godar M, Deswarte K, Vergote K, et al. A bispecific antibody strategy to target multiple type 2 cytokines in asthma. J Allergy Clin Immunol. 2018;142(4):1185–1193.e4. doi: 10.1016/j.jaci.2018.06.002
  • Wenzel S, Ford L, Pearlman D, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med. 2013;368(26):2455–2466. doi: 10.1056/NEJMoa1304048
  • Busse WW, Katial R, Gossage D, et al. Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti–IL-5 receptor α antibody, in a phase I study of subjects with mild asthma. J Allergy Clin Immunol. 2010;125(6):1237–1244.e2. doi: 10.1016/j.jaci.2010.04.005
  • Smelter DF, Sathish V, Thompson MA, et al. Thymic stromal lymphopoietin in cigarette smoke-exposed human airway smooth muscle. J Immunol. 2010;185(5):3035–3040. doi: 10.4049/jimmunol.1000252
  • Laporte JC, Moore PE, Baraldo S, et al. Direct effects of interleukin-13 on signaling pathways for physiological responses in cultured human airway smooth muscle cells. Am J Respir Crit Care Med. 2001;164(1):141–148. doi: 10.1164/ajrccm.164.1.2008060
  • Calzetta L, Ritondo BL, Matera MG, et al. Targeting IL-5 pathway against airway hyperresponsiveness: a comparison between benralizumab and mepolizumab. Br J Pharmacol. 2020;177(20):4750–4765. doi: 10.1111/bph.15240
  • Kapri A, Pant S, Gupta N, et al. Asthma history, Current situation, an overview of its control history, challenges, and ongoing management programs: an updated review. Proc Natl Acad Sci India Sect B Biol Sci. 2023;93(3):539–551. doi: 10.1007/s40011-022-01428-1
  • Van Der Gronde T, Uyl-De Groot CA, Pieters T, et al. Addressing the challenge of high-priced prescription drugs in the era of precision medicine: a systematic review of drug life cycles, therapeutic drug markets and regulatory frameworks. PloS One. 2017;12(8):e0182613. doi: 10.1371/journal.pone.0182613
  • Zheng Y, Abuqayyas L, Megally A, et al. Tezepelumab pharmacokinetics, safety, and tolerability after administration via vial-and-syringe, accessorized prefilled syringe, or autoinjector: a randomized trial in healthy volunteers. Clin Ther. 2021;43(1):142–155.e5. doi: 10.1016/j.clinthera.2020.11.014
  • Alpizar S, Megally A, Chen C, et al. Functionality and performance of an accessorized pre-filled syringe and an autoinjector for at-home administration of tezepelumab in patients with severe, uncontrolled asthma. J Asthma Allergy. 2021;14:381–392. doi: 10.2147/JAA.S305114
  • Shinkai M, Ebisawa M, Fukushima Y, et al. One-year safety and tolerability of tezepelumab in Japanese patients with severe uncontrolled asthma: results of the NOZOMI study. J Asthma. 2023;60(3):616–624. doi: 10.1080/02770903.2022.2082309
  • Gauvreau G. NCT05740748 tezepelumab and methacholine airway hyperresponsiveness in participants with mild allergic asthma. [cited 2023 Sep 23]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05740748?cond=NCT05740748&draw=2&rank=1
  • Parameswaran N, Svenningsen S. NCT05280418 tezepelumab on airway structure and function in patients with uncontrolled moderate-to-severe asthma. [cited 2023 Sep 23]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05280418?cond=NCT05280418&draw=2&rank=1
  • Corren J, Parnes JR, Wang L, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med. 2017;377(10):936–946. doi: 10.1056/NEJMoa1704064

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.