1,770
Views
0
CrossRef citations to date
0
Altmetric
Review

New investigational drugs to treat Sjogren's syndrome: lessons learnt from immunology

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 105-114 | Received 28 Oct 2023, Accepted 26 Jan 2024, Published online: 31 Jan 2024

References

  • Qin B, Wang J, Yang Z, et al. Epidemiology of primary Sjögren’s syndrome: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74(11):1983–1989. doi: 10.1136/annrheumdis-2014-205375
  • Meijer JM, Meiners PM, Huddleston Slater JJR, et al. Health-related quality of life, employment and disability in patients with Sjögren’s syndrome. Rheumatology (Oxford). 2009;48(9):1077–1082. doi: 10.1093/rheumatology/kep141
  • Pego-Reigosa JM, Restrepo Vélez J, Baldini C, et al. Comorbidities (excluding lymphoma) in Sjögren’s syndrome. Rheumatology (Oxford). 2021;60(5):2075–2084. doi: 10.1093/rheumatology/key329
  • Fox RI. Sjögren’s syndrome. The Lancet. 2005;366(9482):321–331. doi: 10.1016/S0140-6736(05)66990-5
  • Brito-Zerón P, Baldini C, Bootsma H, et al. Sjögren syndrome. Nat Rev Dis Primers. 2016;2(1):1–20. doi: 10.1038/nrdp.2016.47
  • Zhong H, Liu S, Wang Y, et al. Primary Sjögren’s syndrome is associated with increased risk of malignancies besides lymphoma: a systematic review and meta-analysis. Autoimmun Rev. 2022;21:103084. doi: 10.1016/j.autrev.2022.103084
  • Bowman SJ, St Pierre Y, Sutcliffe N, et al. Estimating indirect costs in primary Sjögren’s syndrome. J Rheumatol. 2010;37(5):1010–1015. doi: 10.3899/jrheum.090734
  • Callaghan R, Prabu A, Allan RB, et al. Direct healthcare costs and predictors of costs in patients with primary Sjogren’s syndrome. Rheumatology (Oxford). 2007;46(1):105–111. doi: 10.1093/rheumatology/kel155
  • Costa T, Rushton SP, Watson S, et al. Depression in Sjögren’s syndrome mediates the relationship between pain, fatigue, sleepiness, and overall quality of life. Rheumatol Immunol Res. 2023;4(2):78–89. doi: 10.2478/rir-2023-0012
  • Cornec D, Jamin C, Pers J-O. Sjögren’s syndrome: where do we stand, and where shall we go? J Autoimmun. 2014;51:109–114. doi: 10.1016/j.jaut.2014.02.006
  • Ramos-Casals M, Brito-Zerón P, Bombardieri S, et al. EULAR recommendations for the management of Sjögren’s syndrome with topical and systemic therapies. Ann Rheumatic Dis. 2020;79(1):3–18. doi: 10.1136/annrheumdis-2019-216114
  • Seror R, Nocturne G, Mariette X. Current and future therapies for primary Sjögren syndrome. Nat Rev Rheumatol. 2021;17(8):475–486. doi: 10.1038/s41584-021-00634-x
  • Rose NR, Herskowitz A, Neumann DA, et al. Autoimmune myocarditis: a paradigm of post-infection autoimmune disease. Immunol Today. 1988;9(4):117–120. doi: 10.1016/0167-5699(88)91282-0
  • Rose NR. Infection, mimics, and autoimmune disease. J Clin Invest. 2001;107(8):943–944. doi: 10.1172/JCI12673
  • Barnaba V, Sinigaglia F. Molecular mimicry and T cell–mediated autoimmune disease. J Exp Med. 1997;185(9):1529–1532. doi: 10.1084/jem.185.9.1529
  • Kuo C-F, Grainge MJ, Valdes AM, et al. Familial risk of Sjögren’s syndrome and Co-aggregation of autoimmune diseases in affected families: a nationwide population study. Arthritis & rheumat. 2015;67(7):1904–1912. doi: 10.1002/art.39127
  • Thorlacius GE, Björk A, Wahren-Herlenius M. Genetics and epigenetics of primary Sjögren syndrome: implications for future therapies. Nat Rev Rheumatol. 2023;19(5):288–306. doi: 10.1038/s41584-023-00932-6
  • Thorlacius GE, Hultin-Rosenberg L, Sandling JK, et al. Genetic and clinical basis for two distinct subtypes of primary Sjögren’s syndrome. Rheumatology (Oxford). 2021;60(2):837–848. doi: 10.1093/rheumatology/keaa367
  • Li Y, Zhang K, Chen H, et al. A genome-wide association study in Han Chinese identifies a susceptibility locus for primary Sjögren’s syndrome at 7q11.23. Nat Genet. 2013;45(11):1361–1365. doi: 10.1038/ng.2779
  • Lessard CJ, Li H, Adrianto I, et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren’s syndrome. Nat Genet. 2013;45(11):1284–1292. doi: 10.1038/ng.2792
  • Mentlein L, Thorlacius GE, Meneghel L, et al. The rheumatic disease-associated FAM167A-BLK locus encodes DIORA-1, a novel disordered protein expressed highly in bronchial epithelium and alveolar macrophages. Clin Exp Immunol. 2018;193(2):167–177. doi: 10.1111/cei.13138
  • Aqrawi LA, Ivanchenko M, Björk A, et al. Diminished CXCR5 expression in peripheral blood of patients with Sjögren’s syndrome may relate to both genotype and salivary gland homing. Clin Exp Immunol. 2018;192(3):259–270. doi: 10.1111/cei.13118
  • Bodewes ILA, Björk A, Versnel MA, et al. Innate immunity and interferons in the pathogenesis of Sjögren’s syndrome. Rheumatology. 2021;60(6):2561–2573. doi: 10.1093/rheumatology/key360
  • Miceli-Richard C, Gestermann N, Ittah M, et al. The CGGGG insertion/deletion polymorphism of the IRF5 promoter is a strong risk factor for primary Sjögren’s syndrome. Arthritis Rheum. 2009;60(7):1991–1997. doi: 10.1002/art.24662
  • Gestermann N, Mekinian A, Comets E, et al. STAT4 is a confirmed genetic risk factor for Sjögren’s syndrome and could be involved in type 1 interferon pathway signaling. Genes Immun. 2010;11(5):432–438. doi: 10.1038/gene.2010.29
  • Tsinti M, Kassi E, Korkolopoulou P, et al. Functional estrogen receptors alpha and beta are expressed in normal human salivary gland epithelium and apparently mediate immunomodulatory effects. Eur J Oral Sci. 2009;117(5):498–505. doi: 10.1111/j.1600-0722.2009.00659.x
  • Ishimaru N, Arakaki R, Yoshida S, et al. Expression of the retinoblastoma protein RbAp48 in exocrine glands leads to Sjögren’s syndrome–like autoimmune exocrinopathy. J Exp Med. 2008;205(12):2915–2927. doi: 10.1084/jem.20080174
  • Rizzo C, Grasso G, Destro Castaniti GM, et al. Primary Sjogren syndrome: focus on innate immune cells and inflammation. Vaccines. 2020;8(2):272. doi: 10.3390/vaccines8020272
  • You R, He X, Zeng Z, et al. Pyroptosis and its role in autoimmune disease: a potential therapeutic target. Front Immunol. [Internet]. 2022;13. [cited 2023 Oct 3]. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2022.841732
  • Vakrakou AG, Boiu S, Ziakas PD, et al. Systemic activation of NLRP3 inflammasome in patients with severe primary Sjögren’s syndrome fueled by inflammagenic DNA accumulations. J Autoimmun. 2018;91:23–33. doi: 10.1016/j.jaut.2018.02.010
  • Vakrakou AG, Svolaki IP, Evangelou K, et al. Cell-autonomous epithelial activation of AIM2 (absent in melanoma-2) inflammasome by cytoplasmic DNA accumulations in primary Sjögren’s syndrome. J Autoimmun. 2020;108:102381. doi: 10.1016/j.jaut.2019.102381
  • Hong S-M, Lee J, Jang SG, et al. Type I interferon increases inflammasomes associated pyroptosis in the salivary glands of patients with primary Sjögren’s syndrome. Immune Netw. 2020;20:e39. doi: 10.4110/in.2020.20.e39
  • Lavie F, Miceli-Richard C, Ittah M, et al. B-cell activating factor of the tumour necrosis factor family expression in blood monocytes and T cells from patients with primary Sjögren’s syndrome. Scand J Immunol. 2008;67(2):185–192. doi: 10.1111/j.1365-3083.2007.02049.x
  • Pers J-O, Devauchelle V, Daridon C, et al. BAFF-modulated repopulation of B lymphocytes in the blood and salivary glands of rituximab-treated patients with Sjögren’s syndrome. Arthritis Rheum. 2007;56(5):1464–1477. doi: 10.1002/art.22603
  • Ittah M, Miceli-Richard C, Eric Gottenberg J, et al. B cell-activating factor of the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in salivary gland epithelial cells in primary Sjögren’s syndrome. Arthritis Res Ther Internet. 2006;8 (2):R51. [cited 2023 Sep 30]. Available from: https://pubmed.ncbi.nlm.nih.gov/16507175/
  • Ittah M, Miceli-Richard C, Gottenberg J-E, et al. Viruses induce high expression of BAFF by salivary gland epithelial cells through TLR- and type-I IFN-dependent and -independent pathways. Eur J Immunol. 2008;38(4):1058–1064. doi: 10.1002/eji.200738013
  • Mariette X, Roux S, Zhang J, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren’s syndrome. Ann Rheum Dis. 2003;62(2):168–171. doi: 10.1136/ard.62.2.168
  • Nocturne G, Pontarini E, Bombardieri M, et al. Lymphomas complicating primary Sjögren’s syndrome: from autoimmunity to lymphoma. Rheumatology (Oxford). 2021;60(8):3513–3521. doi: 10.1093/rheumatology/kez052
  • Hong X, Meng S, Tang D, et al. Single-cell RNA sequencing reveals the expansion of cytotoxic CD4+ T lymphocytes and a landscape of immune cells in primary Sjögren’s syndrome. Front Immunol [Internet]. 2021;11. [cited 2023 Oct 1]. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2020.594658
  • Iwakura Y, Ishigame H, Saijo S, et al. Functional specialization of interleukin-17 family members. Immunity. 2011;34(2):149–162. doi: 10.1016/j.immuni.2011.02.012
  • Maehara T, Moriyama M, Hayashida J-N, et al. Selective localization of T helper subsets in labial salivary glands from primary Sjögren’s syndrome patients. Clin Exp Immunol. 2012;169(2):89–99. doi: 10.1111/j.1365-2249.2012.04606.x
  • Pontarini E, Murray-Brown WJ, Croia C, et al. Unique expansion of IL-21+ tfh and tph cells under control of ICOS identifies Sjögren’s syndrome with ectopic germinal centres and MALT lymphoma. Ann Rheum Dis. 2020;79(12):1588–1599. doi: 10.1136/annrheumdis-2020-217646
  • Lin X, Wang X, Xiao F, et al. IL-10-producing regulatory B cells restrain the T follicular helper cell response in primary Sjögren’s syndrome. Cell Mol Immunol. 2019;16(12):921–931. doi: 10.1038/s41423-019-0227-z
  • Sarigul M, Yazisiz V, Bassorgun CI, et al. The numbers of Foxp3+ Treg cells are positively correlated with higher grade of infiltration at the salivary glands in primary Sjögren’s syndrome. Lupus. 2010;19(2):138–145. doi: 10.1177/0961203309348234
  • Psianou K, Panagoulias I, Papanastasiou AD, et al. Clinical and immunological parameters of Sjögren’s syndrome. Autoimmun Rev. 2018;17:1053–1064. doi: 10.1016/j.autrev.2018.05.005
  • Pontarini E, Verstappen GM, Grigoriadou S, et al. Blocking T cell co-stimulation in primary Sjögren’s syndrome: rationale, clinical efficacy and modulation of peripheral and salivary gland biomarkers. Clin Exp Rheumatol. 2020;38(Suppl 126):222–227.
  • Qureshi OS, Zheng Y, Nakamura K, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600–603. doi: 10.1126/science.1202947
  • van Berkel, MEAT, Oosterwegel MA. CD28 and ICOS: similar or separate costimulators of T cells? Immunol Lett. 2006;105(2):115–122. doi: 10.1016/j.imlet.2006.02.007
  • Wieczorek G, Bigaud M, Pfister S, et al. Blockade of CD40–CD154 pathway interactions suppresses ectopic lymphoid structures and inhibits pathology in the NOD/ShiLtJ mouse model of Sjögren’s syndrome. Ann Rheumatic Dis. 2019;78(7):974–978. doi: 10.1136/annrheumdis-2018-213929
  • Nocturne G, Mariette X. Advances in understanding the pathogenesis of primary Sjögren’s syndrome. Nat Rev Rheumatol. 2013;9(9):544–556. doi: 10.1038/nrrheum.2013.110
  • Amft N, Curnow SJ, Scheel-Toellner D, et al. Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjögren’s syndrome. Arthritis Rheum. 2001;44(11):2633–2641. doi: 10.1002/1529-0131(200111)44:11<2633:AID-ART443>3.0.CO;2-9
  • Mavragani CP, Fragoulis GE, Moutsopoulos HM. Endocrine alterations in primary Sjogren’s syndrome: an overview. J Autoimmun. 2012;39(4):354–358. doi: 10.1016/j.jaut.2012.05.011
  • Johnson EO, Vlachoyiannopoulos PG, Skopouli FN, et al. Hypofunction of the stress axis in Sjögren’s syndrome. J Rheumatol. 1998;25:1508–1514.
  • Johnson EO, Kostandi M, Moutsopoulos HM. Hypothalamic-pituitary-adrenal axis function in Sjögren’s syndrome. Ann N Y Acad Sci. 2006;1088(1):41–51. doi: 10.1196/annals.1366.018
  • Fox RI, Stern M. Sjögren’s syndrome: mechanisms of pathogenesis involve interaction of immune and neurosecretory systems. Scand J Rheumatol Suppl. 2002;116(sup116):3–13. doi: 10.1080/0300974023208178882
  • Posada J, Valadkhan S, Burge D, et al. Improvement of severe fatigue following nuclease therapy in patients with primary Sjögren’s syndrome: a randomized clinical trial. Arthritis & Rheumat. 2021;73(1):143–150. doi: 10.1002/art.41489
  • Howard Tripp N, Tarn J, Natasari A, et al. Fatigue in primary Sjögren’s syndrome is associated with lower levels of proinflammatory cytokines. RMD Open. 2016;2(2):e000282. doi: 10.1136/rmdopen-2016-000282
  • Davies K, Mirza K, Tarn J, et al. Fatigue in primary Sjögren’s syndrome (pSS) is associated with lower levels of proinflammatory cytokines: a validation study. Rheumatol Int. 2019;39(11):1867–1873. doi: 10.1007/s00296-019-04354-0
  • Price E, Bombardieri M, Kivitz A, et al. Safety and efficacy of filgotinib, lanraplenib and tirabrutinib in Sjögren’s syndrome: a randomized, phase 2, double-blind, placebo-controlled study. Rheumatology. 2022;61(12):4797–4808. doi: 10.1093/rheumatology/keac167
  • Bai W, Liu H, Dou L. Pilot study of baricitinib for active Sjogren’s syndrome. Ann Rheumatic Dis. 2022;81(7):1050–1052. doi: 10.1136/annrheumdis-2021-222053
  • Kang EH, Lee YJ, Hyon JY, et al. Salivary cytokine profiles in primary Sjögren’s syndrome differ from those in non-Sjögren sicca in terms of TNF-α levels and Th-1/Th-2 ratios. Clin Exp Rheumatol. 2011;29:970–976.
  • Chatzantoni K, Mouzaki A. Anti-TNF-α Antibody Therapies in Autoimmune Diseases. Current Topics In Medicinal Chemistry [Internet]. 2006;6 (16):1707–1714. [cited 2023 Oct 3]. Available from: https://pubmed.ncbi.nlm.nih.gov/17017952/
  • Sankar V, Brennan MT, Kok MR, et al. Etanercept in Sjögren’s syndrome: a twelve-week randomized, double-blind, placebo-controlled pilot clinical trial. Arthritis & Rheumatism. 2004;50(7):2240–2245. doi: 10.1002/art.20299
  • Zandbelt MM, de WP, van DP, et al. Etanercept in the treatment of patients with primary Sjögren’s syndrome: a pilot study. J Rheumatol. 2004;31:96–101. 1
  • Mariette X, Ravaud P, Steinfeld S, et al. Inefficacy of infliximab in primary Sjögren’s syndrome: results of the randomized, controlled trial of remicade in primary Sjögren’s syndrome (TRIPSS). Arthritis & Rheumatism. 2004;50(4):1270–1276. doi: 10.1002/art.20146
  • Steinfeld SD, Demols P, Salmon I, et al. Notice of retraction of two articles (“infliximab in patients with primary Sjögren’s syndrome: a pilot study” and “infliximab in patients with primary Sjögren’s syndrome: one-year followup”). Arthritis Rheum. 2013;65(3):814. doi: 10.1002/art.37874
  • Moutsopoulos NM, Katsifis GE, Angelov N, et al. Lack of efficacy of etanercept in Sjogren syndrome correlates with failed suppression of tumour necrosis factor and systemic immune activation. Ann Rheumatic Dis. 2008;67(10):1437–1443. doi: 10.1136/ard.2007.077891
  • Mavragani CP, Niewold TB, Moutsopoulos NM, et al. Augmented interferon‐α pathway activation in patients with Sjögren’s syndrome treated with etanercept. Arthritis & Rheumatism. 2007;56:3995–4004. doi: 10.1002/art.23062
  • Aderka D, Engelmann H, Wysenbeek AJ, et al. The possible role of tumor necrosis factor (TNF) and its natural inhibitors, the soluble-TNF receptors, in autoimmune diseases. Isr J Med Sci. 1992;28(2):126–130.
  • North RA. Molecular physiology of P2X receptors. Physiol Rev. 2002;82(4):1013–1067. doi: 10.1152/physrev.00015.2002
  • Lister MF, Sharkey J, Sawatzky DA, et al. The role of the purinergic P2X7 receptor in inflammation. J Inflamm (Lond). 2007;4(1):5. doi: 10.1186/1476-9255-4-5
  • Rathinam VAK, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell. 2016;165(4):792–800. doi: 10.1016/j.cell.2016.03.046
  • Khalafalla MG, Woods LT, Camden JM, et al. P2X7 receptor antagonism prevents IL-1β release from salivary epithelial cells and reduces inflammation in a mouse model of autoimmune exocrinopathy. J Biol Chem. 2017;292(40):16626–16637. doi: 10.1074/jbc.M117.790741
  • Norheim KB, Harboe E, Gøransson LG, et al. Interleukin-1 inhibition and fatigue in primary Sjögren’s syndrome – a double blind, randomised clinical trial. PloS One. 2012;7:e30123. doi: 10.1371/journal.pone.0030123
  • Gong Y-Z, Nititham J, Taylor K, et al. Differentiation of follicular helper T cells by salivary gland epithelial cells in primary Sjögren’s syndrome. J Autoimmun. 2014;51:57–66. doi: 10.1016/j.jaut.2013.11.003
  • Felten R, Devauchelle-Pensec V, Seror R, et al. Interleukin 6 receptor inhibition in primary sjögren syndrome: a multicentre double-blind randomised placebo-controlled trial. Ann Rheum Dis. 2021;80(3):329–338. doi: 10.1136/annrheumdis-2020-218467
  • Berry JS, Tarn J, Casement J, et al. Examining the biological pathways underlying clinical heterogeneity in Sjogren’s syndrome: proteomic and network analysis. Ann Rheum Dis. 2024;83(1):88–95. doi: 10.1136/ard-2023-224503
  • Gupta S, Singh RK, Dastidar S, et al. Cysteine cathepsin S as an immunomodulatory target: present and future trends. Expert Opin Ther Targets. 2008;12(3):291–299. doi: 10.1517/14728222.12.3.291
  • Saegusa K, Ishimaru N, Yanagi K, et al. Cathepsin S inhibitor prevents autoantigen presentation and autoimmunity. J Clin Invest. 2002;110(3):361–369. doi: 10.1172/JCI0214682
  • Bentley D, Fisher BA, Barone F, et al. A randomized, double-blind, placebo-controlled, parallel group study on the effects of a cathepsin S inhibitor in primary Sjögren’s syndrome. Rheumatology. 2023;kead092(11):3644–3653. doi: 10.1093/rheumatology/kead092
  • Van Nimwegen JF, Mossel E, Van Zuiden GS, et al. Abatacept treatment for patients with early active primary Sjögren’s syndrome: a single-centre, randomised, double-blind, placebo-controlled, phase 3 trial (ASAP-III study). Lancet Rheumatol. 2020;2(3):e153–e163. doi: 10.1016/S2665-9913(19)30160-2
  • Baer AN, Gottenberg J-E, Clair EWS, et al. Efficacy and safety of abatacept in active primary Sjögren’s syndrome: results of a phase III, randomised, placebo-controlled trial. Ann Rheumatic Dis. 2021;80(3):339–348. doi: 10.1136/annrheumdis-2020-218599
  • Arends S, de WL, van NJ, et al. Composite of relevant endpoints for Sjögren’s syndrome (CRESS): development and validation of a novel outcome measure. Lancet Rheumatol. 2021;3(8):e553–e562. doi: 10.1016/S2665-9913(21)00122-3
  • Machado AC, dos Santos LC, Fidelix T, et al. Effectiveness and safety of abatacept for the treatment of patients with primary Sjögren’s syndrome. Clin Rheumatol. 2020;39(1):243–248. doi: 10.1007/s10067-019-04724-w
  • de Wolff L, van Nimwegen JF, Mossel E, et al. Long-term abatacept treatment for 48 weeks in patients with primary Sjögren’s syndrome: the open-label extension phase of the ASAP-III trial. Semin Arthritis Rheum. 2022;53:151955. doi: 10.1016/j.semarthrit.2022.151955
  • A phase 2a study of MEDI5872 (AMG557), a fully human anti-ICOS ligand monoclonal antibody in patients with primary Sjögren’s syndrome [internet]. ACR Meeting Abstracts. [cited 2023 Oct 4]. Available from: https://acrabstracts.org/abstract/a-phase-2a-study-of-medi5872-amg557-a-fully-human-anti-icos-ligand-monoclonal-antibody-in-patients-with-primary-sjogrens-syndrome/.
  • Research C for DE and. Efalizumab (marketed as raptiva) information. FDA [Internet]. 2019 [cited 2023 Oct 4]. Available from: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/efalizumab-marketed-raptiva-information.
  • Research C for DE and. FDA drug safety communication: safety update on progressive multifocal leukoencephalopathy (PML) associated with tysabri (natalizumab). FDA [Internet]. 2019 [cited 2023 Oct 4]. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-safety-update-progressive-multifocal-leukoencephalopathy-pml.
  • Bohra C, Sokol L, Dalia S. Progressive multifocal leukoencephalopathy and monoclonal antibodies: a review. Cancer Control. 2017;24(4):1073274817729901. doi: 10.1177/1073274817729901
  • Bootsma H, Kroese FGM, Vissink A. Editorial: Rituximab in the treatment of Sjögren’s syndrome: is it the right or wrong drug? Arthritis & Rheumat. 2017;69(7):1346–1349. doi: 10.1002/art.40095
  • Devauchelle-Pensec V, Mariette X, Jousse-Joulin S, et al. Treatment of primary Sjögren syndrome with rituximab. Ann Inter Med [Internet]. 2014 [cited 2023 Oct 5]. Available from: https://www.acpjournals.org/doi/10.7326/M13-1085.
  • Bowman SJ, Everett CC, O’Dwyer JL, et al. Randomized controlled trial of Rituximab and cost-effectiveness analysis in treating fatigue and oral dryness in primary Sjögren’s syndrome. Arthritis & Rheumat. 2017;69(7):1440–1450. doi: 10.1002/art.40093
  • van Nimwegen JF, Moerman RV, Sillevis Smitt N, et al. Safety of treatments for primary Sjögren’s syndrome. Expert Opin Drug Saf. 2016;15(4):513–524. doi: 10.1517/14740338.2016.1146676
  • Cornec D, Costa S, Devauchelle-Pensec V, et al. Blood and salivary-gland BAFF-driven B-cell hyperactivity is associated to rituximab inefficacy in primary Sjögren’s syndrome. J Autoimmun. 2016;67:102–110. doi: 10.1016/j.jaut.2015.11.002
  • Cornec D, Devauchelle-Pensec V, Mariette X, et al. Development of the Sjögren’s syndrome responder index, a data-driven composite endpoint for assessing treatment efficacy. Rheumatology. 2015;54(9):1699–1708. doi: 10.1093/rheumatology/kev114
  • Brief report: ultrasonographic assessment of salivary gland response to rituximab in primary Sjögren’s syndrome. [cited 2023 Oct 5]. Available from: https://acrjournals.onlinelibrary.wiley.com/doi/10.1002/art.39088.
  • Seror R, Baron G, Camus M, et al. Development and preliminary validation of the Sjögren’s tool for assessing response (STAR): a consensual composite score for assessing treatment effect in primary Sjögren’s syndrome. Ann Rheumatic Dis. 2022;81(7):979–989. doi: 10.1136/annrheumdis-2021-222054
  • Pontarini E, Sciacca E, Chowdhury F, et al. Serum and tissue biomarkers associated with CRESS and STAR response to B-cell targeted therapy in TRACTISS trial of Sjogren’s syndrome. Arthritis & Rheumatology [Internet]. [cited 2023 Dec 26].Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/art.42772.
  • Nocturne G, Marmontel O, di Filippo M, et al. Efficacy of daratumumab in refractory primary Sjögren disease. RMD Open. 2023;9(3):e003464. doi: 10.1136/rmdopen-2023-003464
  • Gong Q, Ou Q, Ye S, et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol. 2005;174(2):817–826. doi: 10.4049/jimmunol.174.2.817
  • De Vita S, Quartuccio L, Salvin S, et al. Sequential therapy with belimumab followed by rituximab in Sjögren’s syndrome associated with B-cell lymphoproliferation and overexpression of BAFF: evidence for long-term efficacy. Clin Exp Rheumatol. 2014;32:490–494.
  • De Vita S, Quartuccio L, Seror R, et al. Efficacy and safety of belimumab given for 12 months in primary Sjögren’s syndrome: the BELISS open-label phase II study. Rheumatology. 2015;54:2249–2256. doi: 10.1093/rheumatology/kev257
  • Mariette X, Barone F, Baldini C, et al. A randomized, phase II study of sequential belimumab and rituximab in primary Sjögren’s syndrome. JCI Insight [Internet]. 2022 [cited 2023 Oct 4]; 7(23). Available from: https://insight.jci.org/articles/view/163030
  • Bowman SJ, Fox R, Dörner T, et al. Safety and efficacy of subcutaneous ianalumab (VAY736) in patients with primary Sjögren’s syndrome: a randomised, double-blind, placebo-controlled, phase 2b dose-finding trial. Lancet. 2022;399(10320):161–171. doi: 10.1016/S0140-6736(21)02251-0
  • Shi F, Xue R, Zhou X, et al. Telitacicept as a BLyS/APRIL dual inhibitor for autoimmune disease. Immunopharmacol Immunotoxicol. 2021;43(6):666–673. doi: 10.1080/08923973.2021.1973493
  • Xu D, Fang J, Zhang S, et al. Efficacy and safety of telitacicept in primary Sjögren’s syndrome: a randomized, double-blind, placebo-controlled, phase 2 trial. Rheumatology. 2023;kead265. doi: 10.1093/rheumatology/kead265
  • Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol. 2015;15(5):283–294. doi: 10.1038/nri3823
  • Miao M, Hao Z, Guo Y, et al. Short-term and low-dose IL-2 therapy restores the Th17/Treg balance in the peripheral blood of patients with primary Sjögren’s syndrome. Ann Rheumatic Dis. 2018;77(12):1838–1840. doi: 10.1136/annrheumdis-2018-213036
  • He J, Chen J, Miao M, et al. Efficacy and safety of low-dose interleukin 2 for primary Sjogren syndrome: a randomized clinical trial. JAMA Netw Open. 2022;5(11):e2241451. doi: 10.1001/jamanetworkopen.2022.41451
  • Fava RA, Kennedy SM, Wood SG, et al. Lymphotoxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjögren’s syndrome. Arthritis Res Ther. 2011;13(6):R182. doi: 10.1186/ar3507
  • EW SC, Baer AN, Wei C, et al. Clinical efficacy and safety of baminercept, a lymphotoxin β receptor fusion protein, in primary Sjögren’s syndrome. Arthritis & Rheumatology. 2018;70(9):1470–1480. doi: 10.1002/art.40513
  • Gatumu MK, Skarstein K, Papandile A, et al. Blockade of lymphotoxin-beta receptor signaling reduces aspects of Sjogren's syndrome in salivary glands of non-obese diabetic mice. Arthritis Res Ther. 2009;11(1):R24. doi: 10.1186/ar2617
  • Haskett S, Ding J, Zhang W, et al. Identification of novel CD4+ T cell subsets in the target tissue of Sjögren’s syndrome and their differential regulation by the lymphotoxin/light signaling axis. J Immunol. 2016;197(10):3806–3819. doi: 10.4049/jimmunol.1600407
  • Ridgewell D, Thalayasingam N, Ng W-F. Sjögren’s syndrome: shedding light on emerging and key drug targets. Expert Opin Ther Targets. 2022;26(10):869–882. doi: 10.1080/14728222.2022.2157259
  • Karageorgas T, Fragioudaki S, Nezos A, et al. Fatigue in primary Sjögren’s syndrome: clinical, laboratory, psychometric, and biologic associations. Arthritis Care Res (Hoboken). 2016;68(1):123–131. doi: 10.1002/acr.22720
  • Shiboski CH, Shiboski SC, Seror R, et al. 2016 American College of Rheumatology/European league against rheumatism classification criteria for primary Sjögren’s syndrome: a consensus and data-driven methodology involving three international patient cohorts. Arthritis & rheumat. 2017;69(1):35–45. doi: 10.1002/art.39859
  • Vissink A, Bootsma H. Connective tissue diseases: refining the classification criteria for primary Sjogren syndrome. Nat Rev Rheumatol. 2016;13(1):10–12. doi: 10.1038/nrrheum.2016.208
  • Tarn JR, Howard-Tripp N, Lendrem DW, et al. Symptom-based stratification of patients with primary Sjögren’s syndrome: multi-dimensional characterisation of international observational cohorts and reanalyses of randomised clinical trials. Lancet Rheumatol. 2019;1(2):e85–e94. doi: 10.1016/S2665-9913(19)30042-6
  • Martin-Gutierrez L, Peng J, Thompson NL, et al. Stratification of patients with Sjögren’s syndrome and patients with systemic lupus erythematosus according to two shared immune cell signatures, with potential therapeutic implications. Arthritis & rheumat. 2021;73(9):1626–1637. doi: 10.1002/art.41708
  • Altman J, Jones G, Ahmed S, et al. Tear film MicroRNAs as potential biomarkers: a review. Int J Mol Sci. 2023;24(4):3694. doi: 10.3390/ijms24043694
  • Seror R, Bootsma H, Saraux A, et al. Defining disease activity states and clinically meaningful improvement in primary Sjögren’s syndrome with EULAR primary Sjögren’s syndrome disease activity (ESSDAI) and patient-reported indexes (ESSPRI). Ann Rheum Dis. 2016;75(2):382–389. doi: 10.1136/annrheumdis-2014-206008
  • Moingeon P. Artificial intelligence-driven drug development against autoimmune diseases. Trends Pharmacol Sci. 2023;44(7):411–424. doi: 10.1016/j.tips.2023.04.005
  • Schett G, Mackensen A, Mougiakakos D. CAR T-cell therapy in autoimmune diseases. Lancet [Internet]. 2023; [cited 2023 Sep 26]. Available from: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(23)01126-1/fulltext
  • de Buys P, Khanna D, Furst DE. Hemopoietic stem cell transplantation in rheumatic diseases—an update. Autoimmun Rev. 2005;4(7):442–449. doi: 10.1016/j.autrev.2005.03.003