232
Views
0
CrossRef citations to date
0
Altmetric
Review

Investigational pharmacological agents for the treatment of ARDS

, , & ORCID Icon
Pages 243-277 | Received 31 Oct 2023, Accepted 25 Jan 2024, Published online: 27 Feb 2024

References

  • Ashbaugh DG, Bigelow DB, Petty TL, et al. Acute respiratory distress in adults. Lancet. 1967 Aug 12;2(7511):319–323. doi: 10.1016/S0140-6736(67)90168-7
  • Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016 Feb 23;315(8):788–800. doi: 10.1001/jama.2016.0291
  • Sedhai YR, Yuan M, Ketcham SW, et al. Validating measures of disease severity in acute respiratory distress syndrome. Ann Am Thorac Soc. 2021 Jul;18(7):1211–1218.
  • Wang Y, Zhang L, Xi X, et al. The association between etiologies and mortality in acute respiratory distress syndrome: a multicenter observational cohort study. Front Med. 2021;8:739596. doi: 10.3389/fmed.2021.739596
  • Qadir N, Bartz RR, Cooter ML, et al. Variation in early management practices in moderate-to-severe ARDS in the United States: the severe ARDS: generating evidence study. Chest. 2021 Oct;160(4):1304–1315.
  • Thompson BT, Chambers RC, Liu KD, et al. Acute Respiratory Distress Syndrome. N Engl J Med. 2017;377(6):562–572. doi: 10.1056/NEJMra1608077
  • Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):18. doi: 10.1038/s41572-019-0069-0
  • Murray JF, Matthay MA, Luce JM, et al. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis. 1988;138(3):720–3.
  • Bernard GR, Artigas A, Brigham KL, et al. The American-european consensus conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 Pt 1):818–824.
  • Force ADT, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the berlin definition. JAMA. 2012 Jun 20;307(23):2526–2533.
  • Riviello ED, Kiviri W, Twagirumugabe T, et al. Hospital incidence and outcomes of the acute respiratory distress syndrome using the kigali modification of the berlin definition. Am J Respir Crit Care Med. 2016;193(1):52–9. doi: 10.1164/rccm.201503-0584OC
  • Matthay MA, Thompson BT, Ware LB. The Berlin definition of acute respiratory distress syndrome: should patients receiving high-flow nasal oxygen be included? Lancet Respir Med. 2021;9(8):933–936. doi: 10.1016/S2213-2600(21)00105-3
  • Ferguson ND, Fan E, Camporota L, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive care Med. 2012;38(10):1573–82. doi: 10.1007/s00134-012-2682-1
  • Matthay MA, Arabi Y, Arroliga AC, et al. A new global definition of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2024;209(1):37–47. doi: 10.1164/rccm.202303-0558WS
  • Lewis SR, Pritchard MW, Thomas CM, et al. Pharmacological agents for adults with acute respiratory distress syndrome. Cochrane Database Syst Rev. 2019;7(7): CD004477. doi: 10.1002/14651858.CD004477.pub3
  • Chang X, Li S, Fu Y, et al. Safety and efficacy of corticosteroids in ARDS patients: a systematic review and meta-analysis of RCT data. Respir Res. 2022;23(1):301. doi: 10.1186/s12931-022-02186-4
  • Savoie-White FH, Tremblay L, Menier CA, et al. The use of early neuromuscular blockage in acute respiratory distress syndrome: a systematic review and meta-analyses of randomized clinical trials. Heart & Lung. 2023 Jan;57:186–197.
  • Hua Y, Ou X, Li Q, et al. Neuromuscular blockers in the acute respiratory distress syndrome: a meta-analysis. PloS One. 2020;15(1):e0227664. doi: 10.1371/journal.pone.0227664
  • Dushianthan A, Cusack R, Burgess VA, et al. Immunonutrition for acute respiratory distress syndrome (ARDS) in adults. Cochrane Database Syst Rev. 2019;1(1):CD012041. doi: 10.1002/14651858.CD012041.pub2
  • Langlois PL, D’Aragon F, Hardy G, et al. Omega-3 polyunsaturated fatty acids in critically ill patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Nutrition. 2019 May;61:84–92.
  • Malekahmadi M, Pahlavani N, Firouzi S, et al. Effect of enteral immunomodulatory nutrition formula on mortality and critical care parameters in critically ill patients: a systematic review with meta-analysis. Nurs Crit Care. 2022;27(6):838–848.
  • McAuley DF, Cross LM, Hamid U, et al. Keratinocyte growth factor for the treatment of the acute respiratory distress syndrome (KARE): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Respir Med. 2017;5(6):484–491.
  • ARDS Network Authors for the ARDS Network, T. Ketoconazole for early treatment of acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2000;283(15):1995–2002. doi: 10.1001/jama.283.15.1995
  • Randomized, placebo-controlled trial of lisofylline for early treatment of acute lung injury and acute respiratory distress syndrome. Crit Care Med. 2002;30(1):1–6. doi: 10.1097/00003246-200201000-00001
  • National Heart, Lung, and Blood Institute PETAL Clinical Trials Network, Ginde AA, Brower RG, Caterino JM, et al. Early high-dose vitamin D(3) for critically Ill, vitamin D-deficient patients. N Engl J Med. 2019;381(26):2529–2540.
  • Haeberle HA, Calov S, Martus P, et al. Inhaled prostacyclin therapy in the acute respiratory distress syndrome: a randomized controlled multicenter trial. Respir Res. 2023;24(1):58. doi: 10.1186/s12931-023-02346-0
  • Khan A, Benthin C, Zeno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21(1):234. doi: 10.1186/s13054-017-1823-x
  • Afshari A, Brok J, Moller AM, et al. Inhaled nitric oxide for acute respiratory distress syndrome and acute lung injury in adults and children: a systematic review with meta-analysis and trial sequential analysis. Anesth Analg. 2011;112(6):1411–21.
  • Rice TW, Wheeler AP, Thompson BT, et al. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA. 2011;306(14):1574–1581. doi: 10.1001/jama.2011.1435
  • Gadek JE, DeMichele SJ, Karlstad MD, et al. Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Crit Care Med. 1999;27(8):1409–1420.
  • Angus DC, Seymour CW, Bibbins-Domingo K. Caring for patients with acute respiratory distress syndrome: summary of the 2023 ESICM practice guidelines. JAMA. 2023;330(4):368–371. doi: 10.1001/jama.2023.6812
  • Yildirim F, Karaman I, Kaya A. Current situation in ARDS in the light of recent studies: classification, epidemiology and pharmacotherapeutics. Tuberk Toraks. 2021 Dec;69(4):535–546. doi: 10.5578/tt.20219611
  • Abraham E. Neutrophils and acute lung injury. Crit Care Med. 2003;31(4 Suppl):S195–9. doi: 10.1097/01.CCM.0000057843.47705.E8
  • Meyrick B. Pathology of the adult respiratory distress syndrome. Crit Care Clin. 1986;2(3):405–428. doi: 10.1016/S0749-0704(18)30589-X
  • Anderson WR, Thielen K. Correlative study of adult respiratory distress syndrome by light, scanning, and transmission electron microscopy. Ultrastruct Pathol. 1992;16(6):615–28. doi: 10.3109/01913129209023751
  • Gunther A, Mosavi P, Heinemann S, et al. Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia. comparison with the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2000;161(2 Pt 1):454–462.
  • Idell S. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury. Crit Care Med. 2003;31(4 Suppl):S213–20. doi: 10.1097/01.CCM.0000057846.21303.AB
  • Parsons PE, Eisner MD, Thompson BT, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005;33(1):1–6. discussion 230-2. doi: 10.1097/01.CCM.0000149854.61192.DC
  • St John RC, Dorinsky PM. Immunologic therapy for ARDS, septic shock, and multiple-organ failure. Chest. 1993 Mar;103(3):932–943. doi: 10.1378/chest.103.3.932
  • Bain W, Yang H, Shah FA, et al. COVID-19 versus non-COVID-19 acute respiratory distress syndrome: comparison of demographics, physiologic parameters, inflammatory biomarkers, and clinical outcomes. Ann Am Thorac Soc. 2021;18(7):1202–1210.
  • Brault C, Zerbib Y, Kontar L, et al. COVID-19- versus non-COVID-19-related acute respiratory distress syndrome: differences and similarities. Am J Respir Crit Care Med. 2020;202(9):1301–1304. doi: 10.1164/rccm.202005-2025LE
  • Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid-19. N Engl J Med. 2020;383(2):120–128. doi: 10.1056/NEJMoa2015432
  • Beloncle FM. Is COVID-19 different from other causes of acute respiratory distress syndrome? J Intensive Med. 2023;3(3):212–219. doi: 10.1016/j.jointm.2023.02.003
  • Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive care Med. 2020;46(6):1089–1098.
  • Parzy G, Daviet F, Puech B, et al. Venous thromboembolism events following venovenous extracorporeal membrane oxygenation for severe acute respiratory syndrome coronavirus 2 based on CT scans. Crit Care Med. 2020;48(10):e971–e975.
  • Trigonis RA, Holt DB, Yuan R, et al. Incidence of venous thromboembolism in critically ill coronavirus disease 2019 patients receiving prophylactic anticoagulation. Crit Care Med. 2020;48(9):e805–e808.
  • Peter JV, John P, Graham PL, et al. Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: meta-analysis. BMJ. 2008;336(7651):1006–9. doi: 10.1136/bmj.39537.939039.BE
  • Khilnani GC, Hadda V. Corticosteroids and ARDS: a review of treatment and prevention evidence. Lung India. 2011;28(2):114–119. doi: 10.4103/0970-2113.80324
  • Hough CL. Steroids for acute respiratory distress syndrome? Clin Chest Med. 2014;35(4):781–95. doi: 10.1016/j.ccm.2014.08.014
  • Landolf KM, Lemieux SM, Rose C, et al. Corticosteroid use in ARDS and its application to evolving therapeutics for coronavirus disease 2019 (COVID-19): a systematic review. Pharmacotherapy. 2022;42(1):71–90.
  • Kuperminc E, Heming N, Carlos M, et al. Corticosteroids in ARDS. J Clin Med. 2023;12(9):3340. doi: 10.3390/jcm12093340
  • Tomazini BM, Maia IS, Cavalcanti AB, et al. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: the CoDEX randomized clinical trial. JAMA. 2020;324(13):1307–1316. doi: 10.1001/jama.2020.17021
  • Group RC, Horby P, Lim WS, et al. Dexamethasone in hospitalized patients with covid-19. N Engl J Med. 2021;384(8):693–704.
  • Angus DC, Derde L, Al-Beidh F, et al. Effect of hydrocortisone on mortality and organ support in patients with severe COVID-19: The REMAP-CAP COVID-19 corticosteroid domain randomized clinical trial. JAMA. 2020;324(13):1317–1329. doi: 10.1001/jama.2020.17022
  • Taher A, Lashkari M, Keramat F, et al. Comparison of the efficacy of equivalent doses of dexamethasone, methylprednisolone, and hydrocortisone for treatment of COVID-19-related acute respiratory distress syndrome: a prospective three-arm randomized clinical trial. Wien Med Wochenschr. 2023;173(5–6):140–151.
  • Dexamethasone early administration in hospitalized patients with covid-19 pneumonia and high risk of developing acute respiratory distress syndrome [Internet]. ClinicalTrials.gov: NIH > U.S. National Library of Medicine. 2021. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04836780?term=NCT04836780&draw=2&rank=1.
  • A factorial trial of glucocorticoid therapy in acute respiratory distress syndrome: optimizing dosing regimen and developing biomarker-guided treatment [Internet]. ClinicalTrials.gov: NIH > U.S. National Library of Medicine. 2022. Available from: https://classic.clinicaltrials.gov/ct2/show/record/NCT05401812?term=dexamethasone&cond=ARDS%2C+human&draw=2&rank=6.
  • Festic E, Carr GE, Cartin-Ceba R, et al. Randomized Clinical trial of a combination of an inhaled corticosteroid and beta agonist in patients at risk of developing the acute respiratory distress syndrome. Crit Care Med. 2017;45(5):798–805.
  • Ju NY, Gao H, Huang W, et al. Therapeutic effect of inhaled budesonide (Pulmicort(r) Turbuhaler) on the inflammatory response to one-lung ventilation. Anaesthesia. 2014;69(1):14–23.
  • McGaughey DS, Nikcevich DA, Long GD, et al. Inhaled steroids as prophylaxis for delayed pulmonary toxicity syndrome in breast cancer patients undergoing high-dose chemotherapy and autologous stem cell transplantation. Biol Blood Marrow Transplant. 2001;7(5):274–8. doi: 10.1053/bbmt.2001.v7.pm11400949
  • Gupta GK, Cole CH, Abbasi S, et al. Effects of early inhaled beclomethasone therapy on tracheal aspirate inflammatory mediators IL-8 and IL-1ra in ventilated preterm infants at risk for bronchopulmonary dysplasia. Pediatr Pulmonol. 2000;30(4):275–81.
  • Liu EA, Heldt GP. A trial of the safety of inhaled beclomethasone in ventilator-treated neonates. J Pediatr. 1996;129(1):154–6. doi: 10.1016/S0022-3476(96)70204-4
  • Pantalitschka T, Poets CF. Inhaled drugs for the prevention and treatment of bronchopulmonary dysplasia. Pediatr Pulmonol. 2006;41(8):703–8. doi: 10.1002/ppul.20467
  • Yu LM, Bafadhel M, Dorward J, et al. Inhaled budesonide for COVID-19 in people at high risk of complications in the community in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet. 2021;398(10303):843–855. doi: 10.1016/S0140-6736(21)01744-X
  • Ramakrishnan S, Nicolau DV Jr., Langford B, et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): a phase 2, open-label, randomised controlled trial. Lancet Respir Med. 2021;9(7):763–772.
  • Ezer N, Belga S, Daneman N, et al. Inhaled and intranasal ciclesonide for the treatment of COVID-19 in adult outpatients: CONTAIN phase II randomised controlled trial. BMJ. 2021;375:e068060. doi: 10.1136/bmj-2021-068060
  • Clemency BM, Varughese R, Gonzalez-Rojas Y, et al. Efficacy of inhaled ciclesonide for outpatient treatment of adolescents and adults with symptomatic COVID-19: a randomized clinical trial. JAMA Intern Med. 2022;182(1):42–49. doi: 10.1001/jamainternmed.2021.6759
  • Lee TC, Bortolussi-Courval É, Belga S, et al. Inhaled corticosteroids for outpatients with COVID-19: a meta-analysis. Eur Respir J. 2022;59(5):2102921.
  • Griesel M, Wagner C, Mikolajewska A, et al. Inhaled corticosteroids for the treatment of COVID-19. Cochrane Database Syst Rev. 2022;3(3): CD015125. doi: 10.1002/14651858.CD015125
  • Boulware DR, Lindsell CJ, Stewart TG, et al. Inhaled fluticasone furoate for outpatient treatment of Covid-19. N Engl J Med. 2023;389(12):1085–1095. doi: 10.1056/NEJMoa2209421
  • Casadevall A, Pirofski LA. The convalescent sera option for containing COVID-19. J Clin Invest. 2020;130(4):1545–1548. doi: 10.1172/JCI138003
  • Abani O, Abbas A, Abbas F. Convalescent plasma in patients admitted to hospital with COVID-19 (recovery): a randomised controlled, open-label, platform trial. Lancet. 2021;397(10289):2049–2059. doi: 10.1016/S0140-6736(21)00897-7
  • Simonovich VA, Burgos Pratx LD, Scibona P, et al. A randomized trial of convalescent plasma in covid-19 severe pneumonia. N Engl J Med. 2021;384(7):619–629. doi: 10.1056/NEJMoa2031304
  • Agarwal A, Mukherjee A, Kumar G, et al. Convalescent plasma in the management of moderate COVID-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID trial). BMJ. 2020;371:m3939. doi: 10.1136/bmj.m3939
  • Sekine L, Arns B, Fabro BR, et al. Convalescent plasma for COVID-19 in hospitalised patients: an open-label, randomised clinical trial. Eur Respir J. 2022;59(2):2101471.
  • O’Donnell MR, Grinsztejn B, Cummings MJ, et al. A randomized double-blind controlled trial of convalescent plasma in adults with severe COVID-19. J Clin Invest. 2021;131(13). doi: 10.1172/JCI150646
  • Organization WH WHO R&D blueprint – COVID-19 therapeutic trial synopsis. 2020 [cited 2024 Jan 5]. Available from: https://www.who.int/blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf
  • Li L, Zhang W, Hu Y, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA. 2020;324(5):460–470. doi: 10.1001/jama.2020.10044
  • Marshall JC, Murthy S, Diaz J. Characterisation WHOWGotC, management of C-i. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect Dis. 2020;20(8):e192–e197. doi: 10.1016/S1473-3099(20)30483-7
  • Misset B, Piagnerelli M, Hoste E, et al. Convalescent plasma for covid-19-Induced ARDS in mechanically ventilated patients. N Engl J Med. 2023;389(17):1590–1600. doi: 10.1056/NEJMoa2209502
  • Hart BJ, Dyall J, Postnikova E, et al. Interferon-beta and mycophenolic acid are potent inhibitors of middle east respiratory syndrome coronavirus in cell-based assays. J Gen Virol. 2014;95(Pt 3):571–577.
  • Ranieri VM, Pettila V, Karvonen MK, et al. Effect of Intravenous Interferon beta-1a on death and days free from mechanical ventilation among patients with moderate to severe acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2020;323(8):725–733. doi: 10.1001/jama.2019.22525
  • Fowler AA 3rd, Truwit JD, Hite RD, et al. Effect of Vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. JAMA. 2019;322(13):1261–1270. doi: 10.1001/jama.2019.11825
  • National Heart L, Blood Institute ACTN, Truwit JD, et al. Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N Engl J Med.2014;370(23):2191–2200.
  • McAuley DF, Laffey JG, O’Kane CM, et al. Simvastatin in the acute respiratory distress syndrome. N Engl J Med. 2014;371(18):1695–703. doi: 10.1056/NEJMoa1403285
  • Ichikado K, Kotani T, Kondoh Y, et al. Clinical efficacy and safety of multipotent adult progenitor cells (invimestrocel) for acute respiratory distress syndrome (ARDS) caused by pneumonia: a randomized, open-label, standard therapy-controlled, phase 2 multicenter study (ONE-BRIDGE). Stem Cell Res Ther. 2023;14(1):217. doi: 10.1186/s13287-023-03451-z
  • Bellingan G, Jacono F, Bannard-Smith J, et al. Safety and efficacy of multipotent adult progenitor cells in acute respiratory distress syndrome (MUST-ARDS): a multicentre, randomised, double-blind, placebo-controlled phase 1/2 trial. Intensive care Med. 2022;48(1):36–44.
  • Fredenburgh LE, Perrella MA, Barragan-Bradford D, et al. A phase I trial of low-dose inhaled carbon monoxide in sepsis-induced ARDS. JCI Insight. 2018;3(23). doi: 10.1172/jci.insight.124039
  • Ding Q, Wang Y, Yang C, et al. Effect of sivelestat in the treatment of acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. Intensive Care Res. 2023;1:1–10.
  • Zeiher BG, Artigas A, Vincent JL, et al. Neutrophil elastase inhibition in acute lung injury: results of the STRIVE study. Crit Care Med. 2004;32(8):1695–702.
  • Aikawa N, Ishizaka A, Hirasawa H, et al. Reevaluation of the efficacy and safety of the neutrophil elastase inhibitor, Sivelestat, for the treatment of acute lung injury associated with systemic inflammatory response syndrome; a phase IV study. Pulm Pharmacol Ther. 2011;24(5):549–54.
  • Bellingan G, Brealey D, Mancebo J, et al. Comparison of the efficacy and safety of FP-1201-lyo (intravenously administered recombinant human interferon beta-1a) and placebo in the treatment of patients with moderate or severe acute respiratory distress syndrome: study protocol for a randomized controlled trial. Trials. 2017;18(1):536. doi: 10.1186/s13063-017-2234-7
  • Bellingan G, Maksimow M, Howell DC, et al. The effect of intravenous interferon-beta-1a (FP-1201) on lung CD73 expression and on acute respiratory distress syndrome mortality: an open-label study. Lancet Respir Med. 2014;2(2):98–107.
  • Fisher BJ, Kraskauskas D, Martin EJ, et al. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am J Physiol Lung Cell Mol Physiol. 2012;303(1):L20–32. doi: 10.1152/ajplung.00300.2011
  • Fisher BJ, Seropian IM, Kraskauskas D, et al. Ascorbic acid attenuates lipopolysaccharide-induced acute lung injury. Crit Care Med. 2011;39(6):1454–60.
  • Mohammed BM, Fisher BJ, Kraskauskas D, et al. Vitamin C: a novel regulator of neutrophil extracellular trap formation. Nutrients. 2013;5(8):3131–3151. doi: 10.3390/nu5083131
  • Zhang M, Jativa DF. Vitamin C supplementation in the critically ill: a systematic review and meta-analysis. SAGE Open Med. 2018;6:2050312118807615. doi: 10.1177/2050312118807615
  • Lee SI, Lim CM, Koh Y, et al. The effectiveness of vitamin C for patients with severe viral pneumonia in respiratory failure. J Thorac Dis. 2021;13(2):632–641.
  • Boretti A. May intravenous vitamin C work against ARDS in an ICU setting? Anaesth Crit Care Pain Med. 2021;40(4):100891. doi: 10.1016/j.accpm.2021.100891
  • Yadav V, Sharma AK, Parashar G, et al. Patent landscape highlighting therapeutic implications of peptides targeting myristoylated alanine-rich protein kinase-C substrate (MARCKS). Expert Opin Ther Pat. 2023;33(6):445–454.
  • Ha EV, Rogers DF. Novel therapies to inhibit mucus synthesis and secretion in airway hypersecretory diseases. Pharmacology. 2016;97(1–2):84–100. doi: 10.1159/000442794
  • Yin Q, Fang S, Park J, et al. An inhaled inhibitor of myristoylated alanine-rich c kinase substrate reverses LPS-Induced acute lung injury in mice. Am J Respir Cell Mol Biol. 2016;55(5):617–622.
  • Damera G, Jester WF, Jiang M, et al. Inhibition of myristoylated alanine-rich C kinase substrate (MARCKS) protein inhibits ozone-induced airway neutrophilia and inflammation. Exp Lung Res. 2010;36(2):75–84.
  • Milara J, Morcillo E, Monleon D, et al. Roflumilast prevents the metabolic effects of bleomycin-induced fibrosis in a murine model. PloS One. 2015;10(7):e0133453. doi: 10.1371/journal.pone.0133453
  • Cortijo J, Iranzo A, Milara X, et al. Roflumilast, a phosphodiesterase 4 inhibitor, alleviates bleomycin-induced lung injury. Br J Pharmacol. 2009;156(3):534–44.
  • Joo H, Kim KY, Kim JW. The effect of roflumilast on lipopolysaccharide-induced acute lung injury during neutropenia recovery in mice. Eur Respir Soc. 2021;58(suppl 65):PA734. doi: 10.1183/13993003.congress-2021.PA734
  • Zarbock A, Allegretti M, Ley K. Therapeutic inhibition of CXCR2 by reparixin attenuates acute lung injury in mice. Br J Pharmacol. 2008;155(3):357–64. doi: 10.1038/bjp.2008.270
  • Goldstein LJ, Perez RP, Yardley D, et al. A window-of-opportunity trial of the CXCR1/2 inhibitor reparixin in operable HER-2-negative breast cancer. Breast Cancer Res. 2020;22(1):4. doi: 10.1186/s13058-019-1243-8
  • Schott AF, Goldstein LJ, Cristofanilli M, et al. Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancer. Clin Cancer Res. 2017;23(18):5358–5365. doi: 10.1158/1078-0432.CCR-16-2748
  • Goldstein LJ, Mansutti M, Levy C, et al. A randomized, placebo-controlled phase 2 study of paclitaxel in combination with reparixin compared to paclitaxel alone as front-line therapy for metastatic triple-negative breast cancer (fRida). Breast Cancer Res Treat. 2021;190(2):265–275.
  • Piersanti G, Landoni G, Scquizzato T, et al. Reparixin improves survival in critically ill and transplant patients: a meta-analysis. Eur J Clin Invest. 2023;53(10):e14015.
  • Landoni G, Zangrillo A, Piersanti G, et al. The effect of reparixin on survival in patients at high risk for in-hospital mortality: a meta-analysis of randomized trials. Front Immunol. 2022;13:932251. doi: 10.3389/fimmu.2022.932251
  • Add-on reparixin in adult patients with ARDS [Internet]. ClinicalTrials.gov: NIH > U.S. National Library of Medicine. 2022 [cited 2023 Oct 5]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05496868?term=NCT05496868&draw=2&rank=1.
  • Cui Y, Zhang M, Xu H, et al. Elastase inhibitor cyclotheonellazole a: total synthesis and In vivo biological evaluation for acute lung injury. J Med Chem. 2022;65(4):2971–2987. doi: 10.1021/acs.jmedchem.1c01583
  • Ding Q, Wang Y, Yang C, et al. Clinical utility of the sivelestat for the treatment of ALI/ARDS: moving on in the controversy? Intensive Care Res. 2023;3(1):12–17. doi: 10.1007/s44231-022-00012-5
  • Kadoi Y, Hinohara H, Kunimoto F, et al. Pilot study of the effects of ONO-5046 in patients with acute respiratory distress syndrome. Anesth Analg. 2004;99(3):872–877.
  • Inoue Y, Tanaka H, Ogura H, et al. A neutrophil elastase inhibitor, sivelestat, improves leukocyte deformability in patients with acute lung injury. J Trauma. 2006;60(5):936–943. discussion 943. doi: 10.1097/01.ta.0000217271.25809.a0
  • Togo S, Matsuo K, Ishibe A, et al. Usefulness of a selective neutrophil elastase inhibitor (sivelestat) in septic ARDS patients after gastrointestinal surgery. Hepatogastroenterology. 2008;55(84):967–973.
  • Hashimoto S, Okayama Y, Shime N, et al. Neutrophil elastase activity in acute lung injury and respiratory distress syndrome. Respirology. 2008;13(4):581–584.
  • Hayakawa M, Katabami K, Wada T, et al. Sivelestat (selective neutrophil elastase inhibitor) improves the mortality rate of sepsis associated with both acute respiratory distress syndrome and disseminated intravascular coagulation patients. Shock. 2010;33(1):14–18.
  • Miyoshi S, Hamada H, Ito R, et al. Usefulness of a selective neutrophil elastase inhibitor, sivelestat, in acute lung injury patients with sepsis. Drug Des Devel Ther. 2013;7:305–316. doi: 10.2147/DDDT.S42004
  • Tagami T, Tosa R, Omura M, et al. Effect of a selective neutrophil elastase inhibitor on mortality and ventilator-free days in patients with increased extravascular lung water: a post hoc analysis of the PiCCO pulmonary edema study. J Intensive Care. 2014;2(1):67. doi: 10.1186/s40560-014-0067-y
  • Wang Y, Wang M, Zhang H, et al. Sivelestat improves clinical outcomes and decreases ventilator-associated lung injury in children with acute respiratory distress syndrome: a retrospective cohort study. Transl Pediatr. 2022;11(10):1671–1681.
  • Terblanche M, Almog Y, Rosenson RS, et al. Statins and sepsis: multiple modifications at multiple levels. Lancet Infect Dis. 2007;7(5):358–368.
  • Kruger P, Fitzsimmons K, Cook D, et al. Statin therapy is associated with fewer deaths in patients with bacteraemia. Intensive care Med. 2006;32(1):75–79.
  • Jacobson JR, Barnard JW, Grigoryev DN, et al. Simvastatin attenuates vascular leak and inflammation in murine inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol. 2005;288(6):L1026–L1032.
  • Shyamsundar M, McKeown ST, O’Kane CM, et al. Simvastatin decreases lipopolysaccharide-induced pulmonary inflammation in healthy volunteers. Am J Respir Crit Care Med. 2009;179(12):1107–1114. doi: 10.1164/rccm.200810-1584OC
  • Xiong B, Wang C, Tan J, et al. Statins for the prevention and treatment of acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. Respirology. 2016;21(6):1026–1033.
  • Gao XQ, Li YF, Jiang ZL. Impact of statins on ALI/ARDS: a meta-analysis. Pulm Pharmacol Ther. 2016;39:85–91. doi: 10.1016/j.pupt.2016.06.010
  • Chen M, Lu J, Chen Q, et al. Statin in the treatment of ALI/ARDS: a systematic review and meta-analysis based on international databases. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2017;29(1):51–56.
  • Feng Y. Efficacy of statin therapy in patients with acute respiratory distress syndrome/acute lung injury: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2018;22(10):3190–3198. doi: 10.26355/eurrev_201805_15080
  • Pienkos SM, Moore AR, Guan J, et al. Effect of total cholesterol and statin therapy on mortality in ARDS patients: a secondary analysis of the SAILS and HARP-2 trials. Crit Care. 2023;27(1):126. doi: 10.1186/s13054-023-04387-9
  • Platform Adaptive Embedded Trial for Acute Respiratory Distress Syndrome (PETARDS) [Internet]. ClinicalTrials.gov: NIH > U.S. National Library of Medicine. 2022.
  • Zhang X, Zhu Z, Jiao W, et al. Ulinastatin treatment for acute respiratory distress syndrome in China: a meta-analysis of randomized controlled trials. BMC Pulm Med. 2019;19(1):196. doi: 10.1186/s12890-019-0968-6
  • Horvath IL, Bunduc S, Fehervari P, et al. The combination of ulinastatin and somatostatin reduces complication rates in acute pancreatitis: a systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2022;12(1):17979. doi: 10.1038/s41598-022-22341-7
  • Leng YX, Yang SG, Song YH, et al. Ulinastatin for acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. World J Crit Care Med. 2014;3(1):34–41. doi: 10.5492/wjccm.v3.i1.34
  • Schmid B, Kredel M, Ullrich R, et al. Safety and preliminary efficacy of sequential multiple ascending doses of solnatide to treat pulmonary permeability edema in patients with moderate-to-severe ARDS-a randomized, placebo-controlled, double-blind trial. Trials. 2021;22(1):643. doi: 10.1186/s13063-021-05588-9
  • Krenn K, Lucas R, Croize A, et al. Inhaled AP301 for treatment of pulmonary edema in mechanically ventilated patients with acute respiratory distress syndrome: a phase IIa randomized placebo-controlled trial. Crit Care. 2017;21(1):194. doi: 10.1186/s13054-017-1795-x
  • Aigner C, Slama A, Barta M, et al. Treatment of primary graft dysfunction after lung transplantation with orally inhaled AP301: a prospective, randomized pilot study. J Heart Lung Transplant. 2017;37(2):225–231. doi: 10.1016/j.healun.2017.09.021
  • Schmid B, Kranke P, Lucas R, et al. Safety and preliminary efficacy of sequential multiple ascending doses of solnatide to treat pulmonary permeability edema in patients with moderate to severe ARDS in a randomized, placebo-controlled, double-blind trial: preliminary evaluation of safety and feasibility in light of the COVID-19 pandemic. Trials. 2022;23(1):252. doi: 10.1186/s13063-022-06182-3
  • Eberlin M, Muck T, Michel MC. A comprehensive review of the pharmacodynamics, pharmacokinetics, and clinical effects of the neutral endopeptidase inhibitor racecadotril. Front Pharmacol. 2012;3:93. doi: 10.3389/fphar.2012.00093
  • Matheson AJ, Noble S. Racecadotril. Drugs. 2000;59(4):829–835, discussion 836-7. doi: 10.2165/00003495-200059040-00010
  • Hobbs AJ, Moyes AJ, Baliga RS, et al. Neprilysin inhibition for pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled, proof-of-concept trial. Br J Pharmacol. 2019;176(9):1251–1267.
  • Thompson JS, Morice AH. Neutral endopeptidase inhibitors and the pulmonary circulation. Gen Pharmacol. 1996;27(4):581–585. doi: 10.1016/0306-3623(95)02051-9
  • Influence of NEP inhibition on vascular leak and inflammation (NEPi-INFLAMMATION) [Internet]. ClinicalTrials.gov: NIH > U.S. National Library of Medicine. 2023 [cited 2023 Sep 14]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05600062?term=nct05600062&draw=2&rank=1.
  • Jiao JA, Kelly AB, Marzec UM, et al. Inhibition of acute vascular thrombosis in chimpanzees by an anti-human tissue factor antibody targeting the factor X binding site. Thromb Haemost. 2010;103(1):224–233.
  • Morrow DA, Murphy SA, McCabe CH, et al. Potent inhibition of thrombin with a monoclonal antibody against tissue factor (Sunol-cH36): results of the PROXIMATE-TIMI 27 trial. Eur Heart J. 2005;26(7):682–688.
  • Morris PE, Steingrub JS, Huang BY, et al. A phase I study evaluating the pharmacokinetics, safety and tolerability of an antibody-based tissue factor antagonist in subjects with acute lung injury or acute respiratory distress syndrome. BMC Pulm Med. 2012;12(1):5. doi: 10.1186/1471-2466-12-5
  • Effects of TNX-832 (Sunol cH36) in Subjects with Acute Lung Injury/Acute Respiratory Distress Syndrome [Internet]. NIH > U.S. National Library of Medicine. 2011 [cited 2011 Sep 22]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT01438853?term=nct01438853&draw=2&rank=1.
  • Anti-TF antibody (ALT-836) to treat septic patients with acute lung injury or acute respiratory distress syndrome [Internet]. ClinicalTrials.gov: NIH > U.S. National Library of Medicine. 2009 [cited 2015 Apr 10]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT00879606?term=nct00879606&draw=2&rank=1.
  • Goebel U, Siepe M, Mecklenburg A, et al. Carbon monoxide inhalation reduces pulmonary inflammatory response during cardiopulmonary bypass in pigs. Anesthesiology. 2008;108(6):1025–1036.
  • Fredenburgh LE, Kraft BD, Hess DR, et al. Effects of inhaled CO administration on acute lung injury in baboons with pneumococcal pneumonia. Am J Physiol Lung Cell Mol Physiol. 2015;309(8):L834–L846. doi: 10.1152/ajplung.00240.2015
  • Safety study of inhaled carbon monoxide to treat acute respiratory distress syndrome (ARDS) [Internet]. ClinicalTrials.gov: NIH > U.S. National Library of Medicine. 2015 [cited 2019 Oct 17]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02425579?term=nct02425579&draw=2&rank=1.
  • Safety and efficacy study of inhaled carbon monoxide to treat acute respiratory distress syndrome (ARDS) [Internet]. ClinicalTrials.gov: NIH > U.S. National Library of Medicine. 2019 [cited 2022 Aug 23]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03799874?term=nct03799874&draw=2&rank=1.
  • Matthay MA, Pati S, Lee JW. Concise review: mesenchymal stem (stromal) cells: biology and preclinical evidence for therapeutic potential for organ dysfunction following trauma or sepsis. Stem Cells. 2017;35(2):316–324. doi: 10.1002/stem.2551
  • Samsonraj RM, Raghunath M, Nurcombe V, et al. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med. 2017;6(12):2173–2185.
  • Matthay MA, Goolaerts A, Howard JP, et al. Mesenchymal stem cells for acute lung injury: preclinical evidence. Crit Care Med. 2010;38(10 Suppl):S569–S573. doi: 10.1097/CCM.0b013e3181f1ff1d
  • Cardenes N, Caceres E, Romagnoli M, et al. Mesenchymal stem cells: a promising therapy for the acute respiratory distress syndrome. Respiration. 2013;85(4):267–278. doi: 10.1159/000347072
  • Zheng G, Huang L, Tong H, et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir Res. 2014;15(1):39. doi: 10.1186/1465-9921-15-39
  • Simonson OE, Mougiakakos D, Heldring N, et al. In vivo effects of mesenchymal stromal cells in two patients with severe acute respiratory distress syndrome. Stem Cells Transl Med. 2015;4(10):1199–213.
  • Wilson JG, Liu KD, Zhuo H, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med. 2015;3(1):24–32.
  • Matthay MA, Calfee CS, Zhuo H, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respir Med. 2019;7(2):154–162.
  • Yip HK, Fang WF, Li YC, et al. Human umbilical cord-derived mesenchymal stem cells for acute respiratory distress syndrome. Crit Care Med. 2020;48(5):e391–e399.
  • Wick KD, Leligdowicz A, Zhuo H, et al. Mesenchymal stromal cells reduce evidence of lung injury in patients with ARDS. JCI Insight. 2021;6(12). doi: 10.1172/jci.insight.148983
  • Mesenchymal stem cells (MSCs) for treatment of acute respiratory distress syndrome (ARD) in patients with malignancies [Internet]. ClinicalTrials.gov: NIH > U.S. National Library of Medicine. 2016 [cited 2020 Apr 10]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02804945?term=nct02804945&draw=2&rank=1
  • Bone marrow mesenchymal stem cell derived extracellular vesicles infusion treatment for ARDS (EXIT-ARDS) [Internet]. ClinicalTrials.gov: NIH > U.S. National Library of Medicine. 2021 [cited 2023 May 6]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05127122?term=NCT05127122&draw=2&rank=1
  • Extracellular vesicle treatment for acute respiratory distress syndrome (ARDS) (EXTINGUISH ARDS) [Internet]. ClinicalTrials.gov: NIH > U.S. National Library of Medicine. 2022 [cited 2023 Oct 17]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05354141?term=nct05354141&draw=2&rank=1
  • Quijada H, Bermudez T, Kempf CL, et al. Endothelial eNAMPT amplifies pre-clinical acute lung injury: efficacy of an eNAMPT-neutralising monoclonal antibody. Eur Respir J. 2021;57(5):2002536.
  • Sammani S, Bermudez T, Kempf CL, et al. eNAMPT neutralization preserves lung fluid balance and reduces acute renal injury in porcine sepsis/VILI-Induced inflammatory lung injury. Front Physiol. 2022;13:916159. doi: 10.3389/fphys.2022.916159
  • Bermudez T, Sammani S, Song JH, et al. eNAMPT neutralization reduces preclinical ARDS severity via rectified NFkB and Akt/mTORC2 signaling. Sci Rep. 2022;12(1):696. doi: 10.1038/s41598-021-04444-9
  • Sun BL, Tang L, Sun X, et al. A humanized monoclonal antibody targeting extracellular nicotinamide phosphoribosyltransferase prevents aggressive prostate cancer progression. Pharmaceuticals (Basel). 2021;14(12):1322. doi: 10.3390/ph14121322
  • Garcia AN, Casanova NG, Kempf CL, et al. eNAMPT is a novel damage-associated molecular pattern protein that contributes to the severity of radiation-induced lung fibrosis. Am J Respir Cell Mol Biol. 2022;66(5):497–509.
  • First-in-human study to investigate the safety, tolerability, pharmacokinetics and pharmacodynamics of ALT-100 [Internet]. ClinicalTrials.gov: NIH > U.S. National Library of Medicine. 2022 [cited 2023 Sep 14]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05426746?term=NCT05426746&draw=2&rank=1
  • Study of safety and efficacy of ALT-100mAb in participants with moderate/severe ARDS [Internet]. ClinicalTrials.gov: NIH > U.S. National Library of Medicine. 2023 [cited 2023 Jul 10]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05938036?term=NCT05938036&draw=2&rank=1
  • Kumari P, Dembra S, Dembra P, et al. The role of vitamin C as adjuvant therapy in COVID-19. Cureus. 2020;12(11):e11779. doi: 10.7759/cureus.11779
  • Lovit-Covid Investigators obotCCCTG, the R-CAPI, Adhikari NKJ, et al. Intravenous vitamin C for patients hospitalized with COVID-19: two harmonized randomized clinical trials. JAMA. 2023: 330(18):1745–1759.
  • Zhang J, Rao X, Li Y, et al. Pilot trial of high-dose vitamin C in critically ill COVID-19 patients. Ann Intensive Care. 2021;11(1):5. doi: 10.1186/s13613-020-00792-3
  • Beigmohammadi MT, Bitarafan S, Hoseindokht A, et al. The effect of supplementation with vitamins A, B, C, D, and E on disease severity and inflammatory responses in patients with COVID-19: a randomized clinical trial. Trials. 2021;22(1):802. doi: 10.1186/s13063-021-05795-4
  • Landoni G, Piemonti L, Monforte AD, et al. A multicenter phase 2 randomized controlled study on the efficacy and safety of reparixin in the treatment of hospitalized patients with COVID-19 pneumonia. Infect Dis Ther. 2022;11(4):1559–1574.
  • Marconi VC, Ramanan AV, de Bono S, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir Med. 2021;9(12):1407–1418.
  • Ely EW, Ramanan AV, Kartman CE, et al. Efficacy and safety of baricitinib plus standard of care for the treatment of critically ill hospitalised adults with COVID-19 on invasive mechanical ventilation or extracorporeal membrane oxygenation: an exploratory, randomised, placebo-controlled trial. Lancet Respir Med. 2022;10(4):327–336.
  • Cao Y, Wei J, Zou L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): a multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol. 2020;146(1):137–146 e3.
  • Guimaraes PO, Quirk D, Furtado RH, et al. Tofacitinib in patients hospitalized with covid-19 pneumonia. N Engl J Med. 2021;385(5):406–415. doi: 10.1056/NEJMoa2101643
  • Rein L, Calero K, Shah R, et al. Randomized phase 3 trial of ruxolitinib for covid-19-associated acute respiratory distress syndrome. Crit Care Med. 2022;50(12):1701–1713. doi: 10.1097/CCM.0000000000005682
  • Abani O, Abbas A, Abbas F. Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial and updated meta-analysis. Lancet. 2022;400(10349):359–368. doi: 10.1016/S0140-6736(22)01109-6
  • Kalil AC, Patterson TF, Mehta AK, et al. Baricitinib plus remdesivir for hospitalized adults with covid-19. N Engl J Med. 2021;384(9):795–807. doi: 10.1056/NEJMoa2031994
  • Bowdish ME, Barkauskas CE, Overbey JR, et al. A randomized trial of mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome from COVID-19. Am J Respir Crit Care Med. 2023;207(3):261–270. doi: 10.1164/rccm.202201-0157OC
  • Gorman EA, Rynne J, Gardiner HJ, et al. Repair of acute respiratory distress syndrome in COVID-19 by stromal cells (REALIST-COVID trial): a multicenter, randomized, controlled clinical trial. Am J Respir Crit Care Med. 2023;208(3):256–269. doi: 10.1164/rccm.202302-0297OC
  • Monsel A, Hauw-Berlemont C, Mebarki M, et al. Treatment of COVID-19-associated ARDS with mesenchymal stromal cells: a multicenter randomized double-blind trial. Crit Care. 2022;26(1):48. doi: 10.1186/s13054-022-03930-4
  • Lanzoni G, Linetsky E, Correa D, et al. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: a double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl Med. 2021;10(5):660–673.
  • Zarrabi M, Shahrbaf MA, Nouri M, et al. Allogenic mesenchymal stromal cells and their extracellular vesicles in COVID-19 induced ARDS: a randomized controlled trial. Stem Cell Res Ther. 2023;14(1):169. doi: 10.1186/s13287-023-03402-8
  • Iwata-Yoshikawa N, Okamura T, Shimizu Y, et al. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol. 2019;93(6). doi: 10.1128/JVI.01815-18
  • Yang C, Keshavjee S, Liu M. Alpha-1 antitrypsin for COVID-19 treatment: dual role in antiviral infection and anti-inflammation. Front Pharmacol. 2020;11:615398. doi: 10.3389/fphar.2020.615398
  • McElvaney OJ, McEvoy NL, Boland F, et al. A randomized, double-blind, placebo-controlled trial of intravenous alpha-1 antitrypsin for ARDS secondary to COVID-19. Med. 2022;3(4):233–248 e6. doi: 10.1016/j.medj.2022.03.001
  • Pang J, Xu F, Aondio G, et al. Efficacy and tolerability of bevacizumab in patients with severe covid-19. Nat Commun. 2021;12(1):814. doi: 10.1038/s41467-021-21085-8
  • Paine R, Chasse R, Halstead ES, et al. Inhaled sargramostim (recombinant human granulocyte-macrophage colony-stimulating factor) for COVID-19-associated acute hypoxemia: results of the phase 2, randomized, open-label trial (iLeukpulm). Mil Med. 2022;188(7–8):e2629–e2638. doi: 10.1093/milmed/usac362
  • Loganathan S, Athalye SN, Joshi SR. Itolizumab, an anti-CD6 monoclonal antibody, as a potential treatment for COVID-19 complications. Expert Opin Biol Ther. 2020;20(9):1025–1031. doi: 10.1080/14712598.2020.1798399
  • Kumar S, De Souza R, Nadkar M, et al. A two-arm, randomized, controlled, multi-centric, open-label phase-2 study to evaluate the efficacy and safety of Itolizumab in moderate to severe ARDS patients due to COVID-19. Expert Opin Biol Ther. 2021;21(5):675–686.
  • Patel J, Bass D, Beishuizen A, et al. A randomised trial of anti-GM-CSF otilimab in severe COVID-19 pneumonia (OSCAR). Eur Respir J. 2023;61(2):2101870.
  • Temesgen Z, Burger CD, Baker J, et al. Lenzilumab in hospitalised patients with COVID-19 pneumonia (LIVE-AIR): a phase 3, randomised, placebo-controlled trial. Lancet Respir Med. 2022;10(3):237–246.
  • De Luca G, Cavalli G, Campochiaro C, et al. GM-CSF blockade with mavrilimumab in severe COVID-19 pneumonia and systemic hyperinflammation: a single-centre, prospective cohort study. Lancet Rheumatol. 2020;2(8):e465–e473.
  • Criner GJ, Lang FM, Gottlieb RL, et al. Anti-granulocyte-macrophage colony-stimulating factor monoclonal antibody gimsilumab for COVID-19 pneumonia: a randomized, double-blind, Placebo-controlled Trial. Am J Respir Crit Care Med. 2022;205(11):1290–1299. doi: 10.1164/rccm.202108-1859OC
  • Fisher BA, Veenith T, Slade D, et al. Namilumab or infliximab compared with standard of care in hospitalised patients with COVID-19 (CATALYST): a randomised, multicentre, multi-arm, multistage, open-label, adaptive, phase 2, proof-of-concept trial. Lancet Respir Med. 2022;10(3):255–266.
  • Perlin DS, Neil GA, Anderson C, et al. Randomized, double-blind, controlled trial of human anti-LIGHT monoclonal antibody in COVID-19 acute respiratory distress syndrome. J Clin Invest. 2022;132(3). doi: 10.1172/JCI153173
  • Rahmani H, Davoudi-Monfared E, Nourian A, et al. Interferon beta-1b in treatment of severe COVID-19: a randomized clinical trial. Int Immunopharmacol. 2020;88:106903.
  • Monk PD, Marsden RJ, Tear VJ, et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir Med. 2021;9(2):196–206.
  • Investigators I-S. Atorvastatin versus placebo in patients with COVID-19 in intensive care: randomized controlled trial. BMJ. 2022;376:e068407.
  • Investigators R-C, Investigators AC-a, Investigators A, et al. Therapeutic anticoagulation with heparin in critically Ill patients with covid-19. N Engl J Med. 2021;385(9):777–789. doi: 10.1056/NEJMoa2103417
  • Investigators I, Sadeghipour P, Talasaz AH, et al. Effect of intermediate-dose vs standard-dose prophylactic anticoagulation on thrombotic events, extracorporeal membrane oxygenation treatment, or mortality among patients with covid-19 admitted to the intensive care unit: the inspiration randomized clinical trial. JAMA. 2021;325(16):1620–1630. doi: 10.1001/jama.2021.4152
  • Barrett CD, Moore HB, Moore EE, et al. Study of alteplase for respiratory failure in SARS-CoV-2 COVID-19: a vanguard multicenter, rapidly adaptive, pragmatic, randomized controlled trial. Chest. 2022;161(3):710–727.
  • Rashidi F, Barco S, Rezaeifar P, et al. Tissue plasminogen activator for the treatment of adults with critical COVID-19: a pilot randomized clinical trial. Thromb Res. 2022;216:125–128.
  • Sholzberg M, Tang GH, Rahhal H, et al. Effectiveness of therapeutic heparin versus prophylactic heparin on death, mechanical ventilation, or intensive care unit admission in moderately ill patients with COVID-19 admitted to hospital: rapid randomised clinical trial. BMJ. 2021;375:n2400. doi: 10.1136/bmj.n2400
  • Eikelboom JW, Jolly SS, Belley-Cote EP, et al. Colchicine and the combination of rivaroxaban and aspirin in patients hospitalised with COVID-19 (ACT): an open-label, factorial, randomised, controlled trial. Lancet Respir Med. 2022;10(12):1169–1177.
  • Ichinose F, Roberts JD Jr., Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation. 2004;109(25):3106–3111. doi: 10.1161/01.CIR.0000134595.80170.62
  • Tsareva NA, Avdeev SN, Kosanovic D, et al. Inhaled iloprost improves gas exchange in patients with COVID-19 and acute respiratory distress syndrome. Crit Care. 2021;25(1):258. doi: 10.1186/s13054-021-03690-7
  • Sari Kucuk R, Uluc K, Merve Colakoglu S, et al. The effect of using iloprost on prognosis in COVID-19 patients with ARDS: a retrospective clinical study. Eur Rev Med Pharmacol Sci. 2023;27(9):4269–4279.
  • Matthews L, Baker L, Ferrari M, et al. Compassionate use of pulmonary vasodilators in acute severe hypoxic respiratory failure due to COVID-19. J Intensive Care Med. 2022;37(8):1101–1111.
  • Mekontso Dessap A, Papazian L, Schaller M, et al. Inhaled nitric oxide in patients with acute respiratory distress syndrome caused by COVID-19: treatment modalities, clinical response, and outcomes. Ann Intensive Care. 2023;13(1):57. doi: 10.1186/s13613-023-01150-9
  • Consortium WHOST, Pan H, Peto R, et al. Repurposed antiviral drugs for COVID-19 – interim WHO solidarity trial results. N Engl J Med.2021;384(6):497–511.
  • Horby PW, Mafham M, Bell JL. Lopinavir–ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. The Lancet. 2020;396(10259):1345–1352. doi: 10.1016/S0140-6736(20)32013-4
  • Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N Engl J Med. 2020;382(19):1787–1799. doi: 10.1056/NEJMoa2001282
  • Sinha N, Balayla G. Hydroxychloroquine and COVID-19. Postgrad Med J. 2020;96(1139):550–555. doi: 10.1136/postgradmedj-2020-137785
  • Group RC, Horby P, Mafham M, et al. Effect of hydroxychloroquine in hospitalized patients with covid-19. N Engl J Med. 2020;383(21):2030–2040.
  • Abaleke E, Abbas M, Abbasi S. Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021;397(10274):605–612. doi: 10.1016/S0140-6736(21)00149-5
  • Abani O, Abbas A, Abbas F. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021;397(10285):1637–1645. doi: 10.1016/S0140-6736(21)00676-0
  • Hermine O, Mariette X, Porcher R, et al. Tocilizumab plus dexamethasone versus dexamethasone in patients with moderate-to-severe COVID-19 pneumonia: a randomised clinical trial from the CORIMUNO-19 study group. EClinicalMedicine. 2022;46:101362.
  • Hermine O, Mariette X, Tharaux PL, et al. Effect of tocilizumab vs usual care in adults hospitalized with covid-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern Med. 2021;181(1):32–40. doi: 10.1001/jamainternmed.2020.6820
  • Olagnier D, Farahani E, Thyrsted J, et al. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun. 2020;11(1):4938. doi: 10.1038/s41467-020-18764-3
  • Rodrigues TS, de Sa KSG, Ishimoto AY, et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med. 2021;218(3). doi: 10.1084/jem.20201707
  • Group RC. Colchicine in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet Respir Med. 2021;9(12):1419–1426.
  • Zareef R, Diab M, Al Saleh T, et al. Aspirin in COVID-19: pros and cons. Front Pharmacol. 2022;13:849628. doi: 10.3389/fphar.2022.849628
  • Abani O, Abbas A, Abbas F. Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2022;399(10320):143–151. doi: 10.1016/S0140-6736(21)01825-0
  • Hansen J, Baum A, Pascal KE, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science. 2020;369(6506):1010–1014. doi: 10.1126/science.abd0827
  • Abani O, Abbas A, Abbas F. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2022;399(10325):665–676. doi: 10.1016/S0140-6736(22)00163-5
  • Brown SM, Barkauskas CE, Grund B, et al. Intravenous aviptadil and remdesivir for treatment of COVID-19-associated hypoxaemic respiratory failure in the USA (TESICO): a randomised, placebo-controlled trial. Lancet Respir Med. 2023;11(9):791–803.
  • Youssef JG, Lavin P, Schoenfeld DA, et al. The use of iv vasoactive intestinal peptide (aviptadil) in patients with critical COVID-19 respiratory failure: results of a 60-day randomized controlled trial. Crit Care Med. 2022;50(11):1545–1554. doi: 10.1097/CCM.0000000000005660
  • Lo MK, Jordan R, Arvey A, et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep. 2017;7(1):43395. doi: 10.1038/srep43395
  • Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017;9(396). doi: 10.1126/scitranslmed.aal3653
  • Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of covid-19 – final report. N Engl J Med. 2020;383(19):1813–1826. doi: 10.1056/NEJMoa2007764
  • Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569–1578. doi: 10.1016/S0140-6736(20)31022-9
  • O’Halloran JA, Ko ER, Anstrom KJ, et al. Abatacept, cenicriviroc, or infliximab for treatment of adults hospitalized with COVID-19 pneumonia: a randomized clinical trial. JAMA. 2023;330(4):328–339. doi: 10.1001/jama.2023.11043
  • JamaliMoghadamsiahkali S, Zarezade B, Koolaji S, et al. Safety and effectiveness of high-dose vitamin C in patients with COVID-19: a randomized open-label clinical trial. Eur J Med Res. 2021;26(1):20. doi: 10.1186/s40001-021-00490-1
  • Coppock D, Violet PC, Vasquez G, et al. Pharmacologic ascorbic acid as early therapy for hospitalized patients with COVID-19: a randomized clinical trial. Life (Basel). 2022;12(3):453. doi: 10.3390/life12030453
  • Thomas S, Patel D, Bittel B, et al. Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: the COVID a to z randomized clinical trial. JAMA Netw Open. 2021;4(2):e210369. doi: 10.1001/jamanetworkopen.2021.0369
  • Darban M, Malek F, Memarian M, et al. Efficacy of high dose vitamin C, melatonin and zinc in Iranian patients with acute respiratory syndrome due to coronavirus infection: a pilot randomized trial. J Cell Mol Anesth. 2021;6:164–167.
  • Tehrani S, Yadegarynia D, Abrishami A, et al. An investigation into the effects of intravenous vitamin C on pulmonary CT findings and clinical outcomes of patients with COVID-19 pneumonia a randomized clinical trial. Urol J. 2022;19(6):460–465. doi: 10.22037/uj.v18i.6863
  • Philips RL, Wang Y, Cheon H, et al. The JAK-STAT pathway at 30: much learned, much more to do. Cell. 2022;185(21):3857–3876. doi: 10.1016/j.cell.2022.09.023
  • Desai P, Tahiliani V, Hutchinson TE, et al. The TNF superfamily molecule light promotes the generation of circulating and lung-resident memory CD8 T cells following an acute respiratory virus infection. J Immunol. 2018;200(8):2894–2904. doi: 10.4049/jimmunol.1701499
  • Doherty TA, Soroosh P, Khorram N, et al. The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling. Nat Med. 2011;17(5):596–603.
  • Herro R, Croft M. The control of tissue fibrosis by the inflammatory molecule LIGHT (TNF superfamily member 14). Pharmacol Res. 2016;104:151–155. doi: 10.1016/j.phrs.2015.12.018
  • Kirkham AM, Bailey AJM, Shorr R, et al. Systematic review and meta-analysis of randomized controlled trials of mesenchymal stromal cells to treat coronavirus disease 2019: is it too late? Cytotherapy. 2023;25(3):341–352.
  • Sengul F, Ozturk B, Vatansev H. Mesenchymal stem cell therapy for COVID-19. Am J Stem Cells. 2021;10(5):79–89. doi: 10.1155/2021/5593584
  • Dilogo IH, Aditianingsih D, Sugiarto A, et al. Umbilical cord mesenchymal stromal cells as critical COVID-19 adjuvant therapy: a randomized controlled trial. Stem Cells Transl Med. 2021;10(9):1279–1287.
  • Meng F, Xu R, Wang S, et al. Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: a phase 1 clinical trial. Signal Transduct Target Ther. 2020;5(1):172. doi: 10.1038/s41392-020-00286-5
  • Shi L, Huang H, Lu X, et al. Effect of human umbilical cord-derived mesenchymal stem cells on lung damage in severe COVID-19 patients: a randomized, double-blind, placebo-controlled phase 2 trial. Signal Transduct Target Ther. 2021;6(1):58. doi: 10.1038/s41392-021-00488-5
  • Adas G, Cukurova Z, Yasar KK, et al. The systematic effect of mesenchymal stem cell therapy in critical covid-19 patients: a prospective double controlled trial. Cell Transplant. 2021;30:9636897211024942.
  • Fathi-Kazerooni M, Fattah-Ghazi S, Darzi M, et al. Safety and efficacy study of allogeneic human menstrual blood stromal cells secretome to treat severe COVID-19 patients: clinical trial phase I & II. Stem Cell Res Ther. 2022;13(1):96. doi: 10.1186/s13287-022-02771-w
  • Rebelatto CLK, Senegaglia AC, Franck CL, et al. Safety and long-term improvement of mesenchymal stromal cell infusion in critically COVID-19 patients: a randomized clinical trial. Stem Cell Res Ther. 2022;13(1):122. doi: 10.1186/s13287-022-02796-1
  • Shu L, Niu C, Li R, et al. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res Ther. 2020;11(1):361. doi: 10.1186/s13287-020-01875-5
  • Schneider C, Nobs SP, Kurrer M, et al. Induction of the nuclear receptor PPAR-gamma by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat Immunol. 2014;15(11):1026–1037.
  • Trapnell BC, Whitsett JA, Nakata K. Pulmonary alveolar proteinosis. N Engl J Med. 2003;349(26):2527–2539. doi: 10.1056/NEJMra023226
  • Kox M, Waalders NJB, Kooistra EJ, et al. Cytokine levels in critically ill patients with covid-19 and other conditions. JAMA. 2020;324(15):1565–1567. doi: 10.1001/jama.2020.17052
  • Thwaites RS, Sanchez Sevilla Uruchurtu A, Siggins MK, et al. Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19. Sci Immunol. 2021;6(57). doi: 10.1126/sciimmunol.abg9873
  • De Luca G, Cavalli G, Campochiaro C, et al. Mavrilimumab for severe COVID-19 – Authors’ reply. Lancet Rheumatol. 2020;2(11):e662–e663.
  • Temesgen Z, Kelley CF, Cerasoli F, et al. C reactive protein utilisation, a biomarker for early COVID-19 treatment, improves lenzilumab efficacy: results from the randomised phase 3 ‘LIVE-AIR’ trial. Thorax. 2023;78(6):606–616.
  • Kumari P, Kumar A, Sinha C, et al. Off-label use of itolizumab in patients with COVID-19 ARDS: our clinical experience in a dedicated covid center. Indian J Crit Care Med. 2021;25(4):467–469.
  • Kr R, Rathod C, Darnule R, et al. Recovery and SURvival of patients with moderate to severe acute REspiratory distress syndrome (ARDS) due to COVID-19: a multicenter, single-arm, phase IV itolizumab trial: RESURRECT. Expert Opin Biol Ther. 2023;23(5):443–454.
  • Fajgenbaum DC, June CH, Longo DL. Cytokine Storm. N Engl J Med. 2020;383(23):2255–2273. doi: 10.1056/NEJMra2026131
  • Investigators R-C, Gordon AC, Mouncey PR, et al. Interleukin-6 receptor antagonists in critically Ill patients with covid-19. N Engl J Med. 2021;384(16):1491–1502.
  • Wang W, Liu X, Wu S, et al. Definition and risks of cytokine release syndrome in 11 critically Ill COVID-19 patients with pneumonia: analysis of disease characteristics. J Infect Dis. 2020;222(9):1444–1451. doi: 10.1093/infdis/jiaa387
  • Ward-Kavanagh LK, Lin WW, Sedy JR, et al. The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity. 2016;44(5):1005–1019. doi: 10.1016/j.immuni.2016.04.019
  • Perlin DS, Zafir-Lavie I, Roadcap L, et al. Levels of the TNF-Related cytokine LIGHT increase in hospitalized COVID-19 patients with cytokine release syndrome and ARDS. mSphere. 2020;5(4). doi: 10.1128/mSphere.00699-20
  • Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1):222. doi: 10.1038/s41467-019-13940-6
  • Bosi E, Bosi C, Rovere Querini P, et al. Interferon beta-1a (IFNbeta-1a) in COVID-19 patients (INTERCOP): study protocol for a randomized controlled trial. Trials. 2020;21(1):939. doi: 10.1186/s13063-020-04864-4
  • Phillip DM, Jody B, Victoria T, et al. SPRINTER: a randomized, double-blind, placebo-controlled, phase 3 trial to determine the efficacy and safety of inhaled interferon beta-1a (SNG001) for the treatment of patients hospitalised due to COVID-19 (NCT04732949). Eur Respir J. 2022;60(suppl 66):RCT2884.
  • Karampoor S, Hesamizadeh K, Shams Z, et al. The role of lovastatin in the attenuation of COVID-19. Int Immunopharmacol. 2021;101(Pt A):108192.
  • Russo V, Silverio A, Scudiero F, et al. Preadmission statin therapy and clinical outcome in hospitalized patients with COVID-19: an Italian multicenter observational study. J Cardiovasc Pharmacol. 2021;78(1):e94–e100. doi: 10.1097/FJC.0000000000001041
  • Crimi E, Rumana U, Ang DN, et al. Beneficial effects of prehospital use of statins in a large United States cohort of hospitalized coronavirus disease 2019 patients. J Cardiovasc Med (Hagerstown). 2023;24(3):172–183. doi: 10.2459/JCM.0000000000001441
  • Knight R, Walker V, Ip S, et al. Association of COVID-19 with major arterial and venous thrombotic diseases: a population-wide cohort study of 48 million adults in england and wales. Circulation. 2022;146(12):892–906. doi: 10.1161/CIRCULATIONAHA.122.060785
  • Olschewski H, Simonneau G, Galie N, et al. Inhaled iloprost for severe pulmonary hypertension. N Engl J Med. 2002 Aug 1;347(5):322–329. doi: 10.1056/NEJMoa020204
  • Zhang R, Tan Y, Yong C, et al. Pirfenidone ameliorates early pulmonary fibrosis in LPS-induced acute respiratory distress syndrome by inhibiting endothelial-to-mesenchymal transition via the hedgehog signaling pathway. Int Immunopharmacol. 2022;109:108805.
  • Tsao YC, Chuang SH, Tseng CW. Tofacitinib and pirfenidone as rescue therapies for severe COVID-19 in a patient with previously stable interstitial lung disease associated with Sjögren syndrome. Int J Rheum Dis. 2023;27(1). doi: 10.1111/1756-185X.14890
  • Al-Kuraishy HM, Batiha GE, Faidah H, et al. Pirfenidone and post-COVID-19 pulmonary fibrosis: invoked again for realistic goals. Inflammopharmacology. 2022;30(6):2017–2026.
  • Boshra MS, Abou Warda AE, Sayed MA, et al. Effect of pirfenidone on risk of pulmonary fibrosis in COVID-19 patients experiencing cytokine storm. Healthcare. 2022;10(12):2387. doi: 10.3390/healthcare10122387
  • Choudhary R, Kumar A, Ali O, et al. Effectiveness and safety of pirfenidone and nintedanib for pulmonary fibrosis in COVID-19-induced severe pneumonia: an interventional study. Cureus. 2022;14(9):e29435. doi: 10.7759/cureus.29435
  • Hashemian SM, Farhadi T, Varahram M, et al. Nintedanib: a review of the properties, function, and usefulness to minimize COVID-19-induced lung injury. Expert Rev Anti Infect Ther. 2023;21(1):7–14.
  • Horby PW, Peto LP, Staplin N, et al. RECOVERY Collaborative Group. Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Nat Commun. 2024;15(1):924. doi: 10.1038/s41467-023-43644-x
  • Manthey HD, Woodruff TM, Taylor SM, et al. Complement component 5a (C5a). Int J Biochem Cell Biol. 2009;41(11):2114–7. doi: 10.1016/j.biocel.2009.04.005
  • Vlaar AP. Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): an exploratory, open-label, phase 2 randomised controlled trial. Lancet Rheumatol. 2020;2(12):e764–e773. doi: 10.1016/S2665-9913(20)30341-6
  • Vlaar AP. Anti-C5a antibody (vilobelimab) therapy for critically ill, invasively mechanically ventilated patients with COVID-19 (PANAMO): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respir Med. 2022;10(12):1137–1146. doi: 10.1016/S2213-2600(22)00297-1
  • Sinha P, Delucchi KL, Thompson BT, et al. Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive care Med. 2018;44(11):1859–1869.
  • Chotalia M, Patel JM, Bangash MN, et al. Cardiovascular subphenotypes in ARDS: diagnostic and therapeutic implications and overlap with other ARDS subphenotypes. J Clin Med. 2023;12(11):3695. doi: 10.3390/jcm12113695
  • Famous KR, Delucchi K, Ware LB, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195(3):331–338. doi: 10.1164/rccm.201603-0645OC
  • Adamos G, Gavrielatou E, Sarri K, et al. Heterogeneity of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;201(6):728–730. doi: 10.1164/rccm.201906-1110RR
  • Lim MJ, Lakshminrusimha S, Hedriana H, et al. Pregnancy and Severe ARDS with COVID-19: Epidemiology, Diagnosis, Outcomes and Treatment. Semin Fetal Neonatal Med. 2023;28(1):101426. doi: 10.1016/j.siny.2023.101426
  • Cugno M. Complement activation in patients with COVID-19: A novel therapeutic target. J Allergy Clin Immunol. 2020;146(1):215–217. doi: 10.1016/j.jaci.2020.05.006
  • Carvelli J. Association of COVID-19 inflammation with activation of the C5a-C5aR1 axis. Nature. 2020;588(7836):146–150. doi: 10.1038/s41586-020-2600-6
  • COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. 2024Feb 8. Available from: https://www.covid19treatmentguidelines.nih.gov/
  • Tatham KC, Ferguson ND, Zhou Q, et al. Evolution of practice patterns in the management of acute respiratory distress syndrome: a secondary analysis of two successive randomized controlled trials. J Crit Care. 2021;65:274–281.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.