175
Views
0
CrossRef citations to date
0
Altmetric
Special Report

KIT/PDGFRA inhibitors for the treatment of gastrointestinal stromal tumors: getting to the gist of the problem

, , & ORCID Icon
Pages 159-170 | Received 04 Oct 2023, Accepted 09 Feb 2024, Published online: 14 Feb 2024

References

  • Søreide K, Sandvik OM, Søreide JA, et al. Global epidemiology of gastrointestinal stromal tumours (GIST): a systematic review of population-based cohort studies. Cancer Epidemiol. 2016;40:39–46. doi: 10.1016/j.canep.2015.10.031
  • Stratakis CA, Carney JA. The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (Carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (Carney–stratakis syndrome): molecular genetics and clinical implications. J Intern Med. 2009;266(1):43–52. doi: 10.1111/j.1365-2796.2009.02110.x
  • Khan J, Ullah A, Waheed A, et al. Gastrointestinal stromal tumors (GIST): a population-based study using the SEER database, including management and recent advances in targeted therapy. Cancers (Basel). 2022;14(15):3689. doi: 10.3390/cancers14153689
  • Hanayneh W, Starr J, George TJ, et al. Extragastrointestinal stromal tumors of the pelvic cavity and the vagina: two case reports and review of the literature. Gynecol Oncol Rep. 2018;25:3–7. doi: 10.1016/j.gore.2018.04.006
  • Mol CD, Dougan DR, Schneider TR, et al. Structural basis for the autoinhibition and STI-571 inhibition of c-kit tyrosine kinase. J Biol Chem. 2004;279(30):31655–31663. doi: 10.1074/jbc.M403319200
  • Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer. 2011;11(12):865–878. doi: 10.1038/nrc3143
  • Corless CL, Schroeder A, Griffith D, et al. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol. 2005;23(23):5357–5364. doi: 10.1200/JCO.2005.14.068
  • Casali PG, Zalcberg J, Le Cesne A, et al. Ten-year progression-free and overall survival in patients with unresectable or metastatic GI stromal tumors: long-term analysis of the European organisation for research and treatment of cancer, italian sarcoma group, and Australasian gastrointestinal trials group intergroup phase III randomized trial on imatinib at two dose levels. JCO. 2017;35:1713–1720.
  • Heinrich MC, Rankin C, Blanke CD, et al. Correlation of long-term results of imatinib in advanced gastrointestinal stromal tumors with next-generation sequencing results: analysis of phase 3 SWOG intergroup trial S0033. JAMA Oncol. 2017;3(7):944. doi: 10.1001/jamaoncol.2016.6728
  • Vijayan RSK, He P, Modi V, et al. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. J Med Chem. 2015;58(1):466–479. doi: 10.1021/jm501603h
  • Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472–480. doi: 10.1056/NEJMoa020461
  • Gold JS, van der Zwan SM, Gönen M, et al. Outcome of metastatic GIST in the era before tyrosine kinase inhibitors. Ann Surg Oncol. 2007;14(1):134–142. doi: 10.1245/s10434-006-9177-7
  • Verweij J, Casali PG, Zalcberg J, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004;364(9440):1127–1134. doi: 10.1016/S0140-6736(04)17098-0
  • Blanke CD, Rankin C, Demetri GD, et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008;26(4):626–632. doi: 10.1200/JCO.2007.13.4452
  • Debiec-Rychter M, Sciot R, Le Cesne A, et al. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer. 2006;42(8):1093–1103. doi: 10.1016/j.ejca.2006.01.030
  • Patrikidou A, Chabaud S, Ray-Coquard I, et al. Influence of imatinib interruption and rechallenge on the residual disease in patients with advanced GIST: results of the BFR14 prospective French sarcoma group randomised, phase III trial. Ann Oncol. 2013;24(4):1087–1093. doi: 10.1093/annonc/mds587
  • Heinrich MC, Corless CL, Blanke CD, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. JCO. 2006;24(29):4764–4774. doi: 10.1200/JCO.2006.06.2265
  • Liegl B, Kepten I, Le C, et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol. 2008;216(1):64–74. doi: 10.1002/path.2382
  • Wardelmann E, Merkelbach-Bruse S, Pauls K, et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res. 2006;12(6):1743–1749. doi: 10.1158/1078-0432.CCR-05-1211
  • Heinrich MC, Maki RG, Corless CL, et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. JCO. 2008;26(33):5352–5359. doi: 10.1200/JCO.2007.15.7461
  • Evans EK, Gardino AK, Kim JL, et al. A precision therapy against cancers driven by KIT/PDGFRA mutations. Sci Transl Med. 2017;9(414):eaao1690. doi: 10.1126/scitranslmed.aao1690
  • Serrano C, Mariño-Enríquez A, Tao DL, et al. Complementary activity of tyrosine kinase inhibitors against secondary kit mutations in imatinib-resistant gastrointestinal stromal tumours. Br J Cancer. 2019;120(6):612–620. doi: 10.1038/s41416-019-0389-6
  • Kitagawa D, Yokota K, Gouda M, et al. Activity-based kinase profiling of approved tyrosine kinase inhibitors. Genes Cells. 2013;18(2):110–122. doi: 10.1111/gtc.12022
  • Demetri GD, van Oosterom AT, Garrett CR, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368(9544):1329–1338. doi: 10.1016/S0140-6736(06)69446-4
  • Demetri GD, Reichardt P, Kang Y-K, et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381(9863):295–302. doi: 10.1016/S0140-6736(12)61857-1
  • Schaefer I-M, DeMatteo RP, Serrano C. The GIST of advances in treatment of advanced gastrointestinal stromal tumor. Am Soc Clin Oncol Educ Book. 2022;42(42):885–899. doi: 10.1200/EDBK_351231
  • Antonescu CR, Besmer P, Guo T, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res. 2005;11(11):4182–4190. doi: 10.1158/1078-0432.CCR-04-2245
  • Antonescu CR, DeMatteo RP. CCR 20th anniversary commentary: a genetic mechanism of imatinib resistance in gastrointestinal stromal tumor—where are we a Decade Later? Clin Cancer Res. 2015;21(15):3363–3365. doi: 10.1158/1078-0432.CCR-14-3120
  • Gajiwala KS, Wu JC, Christensen J, et al. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc Natl Acad Sci U S A. 2009;106(5):1542–1547. doi: 10.1073/pnas.0812413106
  • Gebreyohannes YK, Wozniak A, Zhai M-E, et al. Robust activity of avapritinib, potent and highly selective inhibitor of mutated KIT, in patient-derived xenograft models of gastrointestinal stromal tumors. Clin Cancer Res. 2019;25(2):609–618. doi: 10.1158/1078-0432.CCR-18-1858
  • Heinrich MC, Jones RL, von Mehren M, et al. Avapritinib in advanced PDGFRA D842V-mutant gastrointestinal stromal tumour (NAVIGATOR): a multicentre, open-label, phase 1 trial. Lancet Oncol. 2020;21:935–946.
  • Jones RL, Serrano C, von Mehren M, et al. Avapritinib in unresectable or metastatic PDGFRA D842V-mutant gastrointestinal stromal tumours: long-term efficacy and safety data from the NAVIGATOR phase I trial. Eur J Cancer. 2021;145:132–142. doi: 10.1016/j.ejca.2020.12.008
  • Kang Y-K, George S, Jones RL, et al. Avapritinib versus regorafenib in locally advanced unresectable or metastatic GI stromal tumor: a randomized, open-label phase III study. JCO. 2021;39(28):3128–3139. doi: 10.1200/JCO.21.00217
  • Heinrich MC, Li J, Zhang X, et al. Clinical efficacy of avapritinib in gastrointestinal stromal tumors (GIST) with different KIT genotypes: post hoc analysis of the phase 1 NAVIGATOR and phase 1/2 CS3007-101 trials. JCO. 2023;41(16_suppl):11523–11523. doi: 10.1200/JCO.2023.41.16_suppl.11523
  • Serrano C, Bauer S, Gómez-Peregrina D, et al. Circulating tumor DNA analysis of the phase III VOYAGER trial: KIT mutational landscape and outcomes in patients with advanced gastrointestinal stromal tumor treated with avapritinib or regorafenib. Ann Oncol. 2023;34(7):615–625. doi: 10.1016/j.annonc.2023.04.006
  • Smith BD, Kaufman MD, Lu W-P, et al. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer Cell. 2019;35(5):738–751.e9. doi: 10.1016/j.ccell.2019.04.006
  • Heinrich MC, Jones RL, George S, et al. Ripretinib versus sunitinib in gastrointestinal stromal tumor: ctDNA biomarker analysis of the phase 3 INTRIGUE trial. Nat Med [Internet]. 2024 [cited 2024 Jan 8]. Available from: https://www.nature.com/articles/s41591-023-02734-5
  • Janku F, Abdul Razak AR, Chi P, et al. Switch control inhibition of KIT and PDGFRA in patients with advanced gastrointestinal stromal tumor: a phase I study of ripretinib. JCO. 2020;38(28):3294–3303. doi: 10.1200/JCO.20.00522
  • Blay J-Y, Serrano C, Heinrich MC, et al. Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21(7):923–934. doi: 10.1016/S1470-2045(20)30168-6
  • Bauer S, Jones RL, Blay J-Y, et al. Ripretinib versus sunitinib in patients with advanced gastrointestinal stromal tumor after treatment with imatinib (INTRIGUE): a randomized, open-label, phase III trial. J Clin Oncol. 2022;40(34):3918–3928. doi: 10.1200/JCO.22.00294
  • Bauer S, Jones RL, George S, et al. Mutational heterogeneity of imatinib resistance and efficacy of ripretinib vs sunitinib in patients with gastrointestinal stromal tumor: ctDNA analysis from INTRIGUE. JCO. 2023;41(36_suppl):397784–397784. doi: 10.1200/JCO.2023.41.36_suppl.397784
  • George S, Blay J-Y, Chi P, et al. INSIGHT: a phase 3, randomized, multicenter, open-label study of ripretinib vs sunitinib in patients with advanced gastrointestinal stromal tumor previously treated with imatinib harboring KIT exon 11 + 17 and/or 18 mutations. JCO. 2023;41(16_suppl):TPS11582–TPS11582. doi: 10.1200/JCO.2023.41.16_suppl.TPS11582
  • George S, Wang Q, Heinrich MC, et al. Efficacy and safety of regorafenib in patients with metastatic and/or unresectable GI stromal tumor after failure of imatinib and sunitinib: a multicenter phase II trial. J Clin Oncol. 2012;30(19):2401–2407. doi: 10.1200/JCO.2011.39.9394
  • Blum A, Dorsch D, Linde N, et al. Identification of M4205─A highly selective inhibitor of KIT mutations for treatment of unresectable metastatic or recurrent gastrointestinal stromal tumors. J Med Chem. 2023;66(4):2386–2395. doi: 10.1021/acs.jmedchem.2c00851
  • De Sutter L, Wozniak A, Verreet J, et al. Antitumor efficacy of the novel KIT inhibitor IDRX-42 (formerly M4205) in patient- and cell line–derived xenograft models of gastrointestinal stromal tumor (GIST). Clin Cancer Res. 2023;29(15):2859–2868. doi: 10.1158/1078-0432.CCR-22-3822
  • George S, Demetri GD, Lydon N, et al. Phase 1/1b first-in-human study of IDRX-42, a novel oral tyrosine kinase inhibitor (TKI), in patients with metastatic and/or unresectable gastrointestinal stromal tumors (GISTs). JCO. 2023;41(4_suppl):TPS483–TPS483. doi: 10.1200/JCO.2023.41.4_suppl.TPS483
  • Banks E, Grondine M, Bhavsar D, et al. Discovery and pharmacological characterization of AZD3229, a potent KIT/PDGFRα inhibitor for treatment of gastrointestinal stromal tumors. Sci Transl Med. 2020;12(541):eaaz2481. doi: 10.1126/scitranslmed.aaz2481
  • Rivera VM, Huang W-S, Lu M, et al. Abstract 1292: preclinical characterization of THE-630, a next-generation inhibitor for KIT-mutant gastrointestinal stromal tumors (GIST). Cancer Res. 2021;81(13_Supplement):1292–1292. doi: 10.1158/1538-7445.AM2021-1292
  • George S, Tap WD, von Mehren M, et al. Initial results from the phase (ph) 1 portion of a ph 1/2 study of THE-630 in patients (pts) with advanced gastrointestinal stromal tumor (GIST). JCO. 2023;41(16_suppl):e23508–e23508. doi: 10.1200/JCO.2023.41.16_suppl.e23508
  • Theseus pharmaceuticals. 2023. Available from: https://www.prnewswire.com/news-releases/theseus-pharmaceuticals-to-discontinue-enrollment-in-phase-12-study-and-terminate-development-of-the-630-in-patients-with-gist-301877076.html
  • Serrano C, Leal A, Kuang Y, et al. Phase I study of rapid alternation of sunitinib and regorafenib for the treatment of tyrosine kinase inhibitor refractory gastrointestinal stromal tumors. Clin Cancer Res. 2019;25(24):7287–7293. doi: 10.1158/1078-0432.CCR-19-2150
  • Yip D, Zalcberg JR, Blay J-Y, et al. ALT-GIST: randomized phase II trial of imatinib alternating with regorafenib versus imatinib alone for the first-line treatment of metastatic gastrointestinal stromal tumor (GIST). JCO. 2019;37(15_suppl):11023–11023. doi: 10.1200/JCO.2019.37.15_suppl.11023
  • Gebreyohannes YK, Burton EA, Wozniak A, et al. PLX9486 shows anti-tumor efficacy in patient-derived, tyrosine kinase inhibitor-resistant KIT-mutant xenograft models of gastrointestinal stromal tumors. Clin Exp Med. 2019;19(2):201–210. doi: 10.1007/s10238-018-0541-2
  • Wagner AJ, Severson PL, Shields AF, et al. Association of combination of conformation-specific KIT inhibitors with clinical benefit in patients with refractory gastrointestinal stromal tumors: a phase 1b/2a nonrandomized clinical trial. JAMA Oncol. 2021;7(9):1343. doi: 10.1001/jamaoncol.2021.2086
  • Tap WD, Wagner AJ, Bauer S, et al. Safety, pharmacokinetics (PK), and clinical activity of bezuclastinib + sunitinib in previously-treated gastrointestinal stromal tumor (GIST): results from part 1 of the phase 3 peak study. JCO. 2023;41(16_suppl):11537–11537. doi: 10.1200/JCO.2023.41.16_suppl.11537
  • Workman P, Burrows F, Neckers L, et al. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci. 2007;1113(1):202–216. doi: 10.1196/annals.1391.012
  • Saito Y, Takahashi T, Obata Y, et al. TAS-116 inhibits oncogenic KIT signalling on the golgi in both imatinib-naïve and imatinib-resistant gastrointestinal stromal tumours. Br J Cancer. 2020;122(5):658–667. doi: 10.1038/s41416-019-0688-y
  • Shimomura A, Yamamoto N, Kondo S, et al. First-in-human phase I study of an oral HSP90 inhibitor, TAS-116, in patients with advanced solid tumors. Mol Cancer Ther. 2019;18(3):531–540. doi: 10.1158/1535-7163.MCT-18-0831
  • Kurokawa Y, Honma Y, Sawaki A, et al. Pimitespib in patients with advanced gastrointestinal stromal tumor (CHAPTER-GIST-301): a randomized, double-blind, placebo-controlled phase III trial. Ann Oncol. 2022;33(9):959–967. doi: 10.1016/j.annonc.2022.05.518
  • Chi P, Chen Y, Zhang L, et al. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature. 2010;467(7317):849–853. doi: 10.1038/nature09409
  • Ruiz-Demoulin S, Trenquier E, Dekkar S, et al. LIX1 controls MAPK signaling reactivation and contributes to GIST-T1 cell resistance to imatinib. Int J Mol Sci. 2023;24(8):7138. doi: 10.3390/ijms24087138
  • Javidi-Sharifi N, Traer E, Martinez J, et al. Crosstalk between KIT and FGFR3 promotes gastrointestinal stromal tumor cell growth and drug resistance. Cancer Res. 2015;75(5):880–891. doi: 10.1158/0008-5472.CAN-14-0573
  • Li F, Huynh H, Li X, et al. FGFR-Mediated reactivation of MAPK signaling attenuates antitumor effects of imatinib in gastrointestinal stromal tumors. Cancer Discovery. 2015;5(4):438–451. doi: 10.1158/2159-8290.CD-14-0763
  • Kelly CM, Shoushtari AN, Qin L-X, et al. A phase Ib study of BGJ398, a pan-FGFR kinase inhibitor in combination with imatinib in patients with advanced gastrointestinal stromal tumor. Invest New Drugs. 2019;37(2):282–290. doi: 10.1007/s10637-018-0648-z
  • Cohen NA, Zeng S, Seifert AM, et al. Pharmacological inhibition of KIT activates MET signaling in gastrointestinal stromal tumors. Cancer Res. 2015;75(10):2061–2070. doi: 10.1158/0008-5472.CAN-14-2564
  • Schöffski P, Mir O, Kasper B, et al. Activity and safety of the multi-target tyrosine kinase inhibitor cabozantinib in patients with metastatic gastrointestinal stromal tumour after treatment with imatinib and sunitinib: European organisation for research and treatment of cancer phase II trial 1317 “CaboGIST”. Eur J Cancer. 2020;134:62–74. doi: 10.1016/j.ejca.2020.04.021
  • Ran L, Sirota I, Cao Z, et al. Combined inhibition of MAP kinase and KIT signaling synergistically destabilizes ETV1 and suppresses GIST tumor growth. Cancer Discovery. 2015;5(3):304–315. doi: 10.1158/2159-8290.CD-14-0985
  • Gupta A, Singh J, García-Valverde A, et al. Ripretinib and MEK inhibitors synergize to induce apoptosis in preclinical models of GIST and systemic mastocytosis. Mol Cancer Ther. 2021;20(7):1234–1245. doi: 10.1158/1535-7163.MCT-20-0824
  • Chi P, Qin L-X, Nguyen B, et al. Phase II trial of imatinib plus binimetinib in patients with treatment-naive advanced gastrointestinal stromal tumor. JCO. 2022;40(9):997–1008. doi: 10.1200/JCO.21.02029
  • Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704–1708. doi: 10.1126/science.1065874
  • García-Valverde A, Rosell J, Sayols S, et al. E3 ubiquitin ligase atrogin-1 mediates adaptive resistance to KIT-targeted inhibition in gastrointestinal stromal tumor. Oncogene. 2021;40(48):6614–6626. doi: 10.1038/s41388-021-02049-0
  • Sakamoto KM, Kim KB, Kumagai A, et al. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA. 2001;98(15):8554–8559. doi: 10.1073/pnas.141230798
  • Kannt A, Đikić I. Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. Cell Chem Biol. 2021;28(7):1014–1031. doi: 10.1016/j.chembiol.2021.04.007
  • Gao X, Burris HA III, Vuky J, et al. Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in metastatic castration-resistant prostate cancer (mCRPC). JCO. 2022;40(6_suppl):17–17. doi: 10.1200/JCO.2022.40.6_suppl.017
  • Petrylak DP, Gao X, Vogelzang NJ, et al. First-in-human phase I study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC) following enzalutamide (ENZ) and/or abiraterone (ABI). JCO. 2020;38(15_suppl):3500–3500. doi: 10.1200/JCO.2020.38.15_suppl.3500
  • Falkenhorst J, Grunewald S, Mühlenberg T, et al. Inhibitor of apoptosis proteins (IAPs) are commonly dysregulated in GIST and can be pharmacologically targeted to enhance the pro-apoptotic activity of imatinib. Oncotarget. 2016;7(27):41390–41403. doi: 10.18632/oncotarget.9159

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.