140
Views
0
CrossRef citations to date
0
Altmetric
Review

Enhancing anti-CD274 (PD-L1) targeting through combinatorial immunotherapy with bispecific antibodies and fusion proteins: from preclinical to phase II clinical trials

, ORCID Icon, , ORCID Icon &
Pages 229-242 | Received 03 Dec 2023, Accepted 12 Feb 2024, Published online: 23 Feb 2024

References

  • Liu J, Chen Z, Li Y, et al. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy. Front Pharmacol. 2021;12:731798. doi: 10.3389/fphar.2021.731798
  • Vaddepally RK, Kharel P, Pandey R, et al. Review of indications of FDA-Approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel). 2020 Mar 20;12(3):738. doi: 10.3390/cancers12030738
  • Aleem A, Shah H. Atezolizumab: treasure island. (FL): StatPearls Publishing; 2023 [cited 2023 Jan 9]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK567758/#
  • Agency EM. Tecentriq (atezolizumab): an overview of tecentriq and why it is authorised in the EU. 2022 [cited 2023 Nov 19]. Available from: https://www.ema.europa.eu/en/documents/overview/tecentriq-epar-medicine-overview_en.pdf
  • Agency EM. Imfinzi (durvalumab): an overview of imfinzi and why it is authorised in the EU. 2022 [cited 2023 Nov 19]. EMA/949093/2022 EMEA/H/C/004771. Available from: https://www.ema.europa.eu/en/documents/overview/imfinzi-epar-medicine-overview_en.pdf
  • Agency EM Bavencio (avelumab), an overview of Bavencio and why it is authorised in the EU. 2022 [cited 2023 Nov 19]. EMA/584705/2022 EMEA/H/C/004338]. Available from: https://www.ema.europa.eu/en/documents/overview/bavencio-epar-medicine-overview_en.pdf
  • Morad G, Helmink BA, Sharma P, et al. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 2021 Oct 14;184(21):5309–5337. doi: 10.1016/j.cell.2021.09.020
  • Doroshow DB, Bhalla S, Beasley MB, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021 Jun;18(6):345–362.
  • Büttner R, Gosney JR, Skov BG, et al. Programmed death-ligand 1 immunohistochemistry testing: a review of analytical assays and clinical implementation in non-small-cell lung cancer. J Clin Oncol. 2017 Dec 01;35(34):3867–3876. doi: 10.1200/JCO.2017.74.7642
  • Shi H, Zhang W, Zhang L, et al. Comparison of different predictive biomarker testing assays for PD-1/PD-L1 checkpoint inhibitors response: a systematic review and network meta-analysis. Front Immunol. 2023;14:1265202. doi: 10.3389/fimmu.2023.1265202
  • Lu S, Stein JE, Rimm DL, et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 2019 Aug 01;5(8):1195–1204. doi: 10.1001/jamaoncol.2019.1549
  • Schildhaus HU. Predictive value of PD-L1 diagnostics. Pathologe. 2018 Nov;39(6):498–519. doi: 10.1007/s00292-018-0507-x
  • Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016 Dec;17(12):e542–e551. doi: 10.1016/S1470-2045(16)30406-5
  • Simonsen AT, Utke A, Lade-Keller J, et al. A targeted expression panel for classification, gene fusion detection and PD-L1 measurements - Can molecular profiling replace immunohistochemistry in non-small cell lung cancer? Exp Mol Pathol. 2022 Apr;125:104749.
  • Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015 Apr;14(4):847–856. doi: 10.1158/1535-7163.MCT-14-0983
  • Marletta S, Fusco N, Munari E, et al. Atlas of PD-L1 for pathologists: indications, scores, diagnostic platforms and reporting systems. J Pers Med. 2022 Jun 29;12(7):1073. doi: 10.3390/jpm12071073
  • Strickler JH, Hanks BA, Khasraw M. Tumor mutational burden as a predictor of immunotherapy response: is more always better? Clin Cancer Res. 2021 Mar 1;27(5):1236–1241.
  • McGrail DJ, Pilié PG, Rashid NU, et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol. 2021 May;32(5):661–672.
  • Prasad V, Addeo A. The FDA approval of pembrolizumab for patients with TMB >10 mut/Mb: was it a wise decision? No. Ann Oncol. 2020 Sep;31(9):1112–1114. doi: 10.1016/j.annonc.2020.07.001
  • Yu H, Chen Z, Ballman KV, et al. Correlation of PD-L1 expression with tumor mutation burden and gene signatures for prognosis in early-stage squamous cell lung carcinoma. J Thorac Oncol. 2019 Jan;14(1):25–36.
  • Rizvi H, Sanchez-Vega F, La K, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018 Mar 1;36(7):633–641. doi: 10.1200/JCO.2017.75.3384
  • Goodman AM, Sokol ES, Frampton GM, et al. Microsatellite-stable tumors with high mutational burden benefit from immunotherapy. Cancer Immunol Res. 2019 Oct;7(10):1570–1573.
  • Gettinger S, Choi J, Hastings K, et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 2017 Dec;7(12):1420–1435.
  • Chowell D, Morris LGT, Grigg CM, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. 2018 Feb 2;359(6375):582–587. doi: 10.1126/science.aao4572
  • Negrao MV, Lam VK, Reuben A, et al. PD-L1 expression, tumor mutational burden, and cancer gene mutations are stronger predictors of benefit from immune checkpoint blockade than HLA class I genotype in non-small cell lung cancer. J Thorac Oncol. 2019 Jun;14(6):1021–1031.
  • Klouch KZ, Stern MH, Trabelsi-Grati O, et al. Microsatellite instability detection in breast cancer using drop-off droplet digital PCR. Oncogene. 2022 Dec;41(49):5289–5297.
  • Ni L, Lu J. Interferon gamma in cancer immunotherapy. Cancer Med. 2018 Sep;7(9):4509–4516. doi: 10.1002/cam4.1700
  • Upadhaya S, Neftelinov ST, Hodge J, et al. Challenges and opportunities in the PD1/PDL1 inhibitor clinical trial landscape. Nat Rev Drug Discov. 2022 Jul;21(7):482–483.
  • Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015 Jan;43(Database issue):D447–D452.
  • Kim JY, Kim J, Cho EY, et al. Lymphocyte-activating gene 3 expression in tumor cells predicts immune checkpoint inhibitor response in triple negative breast cancer. Front Oncol. 2023;13:1146934. doi: 10.3389/fonc.2023.1146934
  • Simon S, Voillet V, Vignard V, et al. PD-1 and TIGIT coexpression identifies a circulating CD8 T cell subset predictive of response to anti-PD-1 therapy. J Immunother Cancer. 2020 Nov;8(2):e001631.
  • Yang Z, Peng Y, Guo W, et al. PD-L1 and CD47 co-expression predicts survival and enlightens future dual-targeting immunotherapy in non-small cell lung cancer. Thorac Cancer. 2021 Jun;12(11):1743–1751.
  • Kolb T, Benckendorff J, Möller P. et al. Heterogeneous expression of predictive biomarkers PD-L1 and TIGIT in non-mucinous lung adenocarcinoma and corresponding lymph node metastasis: a challenge for clinical biomarker testing. Neoplasia. 2023 Apr;38:100884.
  • van de Donk PP, Oosting SF, Knapen DG, et al. Molecular imaging to support cancer immunotherapy. J Immunother Cancer. 2022 Aug;10(8). doi: 10.1136/jitc-2022-004949
  • Krutzek F, Donat CK, Ullrich M, et al. Design and biological evaluation of small-molecule PET-tracers for imaging of programmed death ligand 1. Cancers (Basel). 2023 May 6;15(9):2638. doi: 10.3390/cancers15092638
  • Hegi-Johnson F, Rudd SE, Wichmann CW, et al. PD-L1 positron emission tomography imaging in patients with non-small cell lung cancer: preliminary results of the ImmunoPET phase 0 study. Int J Radiat Oncol Biol Phys. 2023 Nov 1;117(3):675–682. doi: 10.1016/j.ijrobp.2023.05.019
  • Shen X, Huang S, Xiao H, et al. Efficacy and safety of PD-1/PD-L1 plus CTLA-4 antibodies ± other therapies in lung cancer: a systematic review and meta-analysis. Eur J Hosp Pharm. 2023 Jan;30(1):3–8.
  • Ma Y, Xue J, Zhao Y, et al. Phase I trial of KN046, a novel bispecific antibody targeting PD-L1 and CTLA-4 in patients with advanced solid tumors. J Immunother Cancer. 2023 Jun;11(6):e006654.
  • Jiang C, Zhang L, Xu X, et al. Engineering a smart agent for enhanced immunotherapy effect by simultaneously blocking PD-L1 and CTLA-4. Adv Sci. 2021 Oct;8(20):e2102500.
  • Xiong A, Li W, Li X. et al. Efficacy and safety of KN046, a novel bispecific antibody against PD-L1 and CTLA-4, in patients with non-small cell lung cancer who failed platinum-based chemotherapy: a phase II study. Eur J Cancer. 2023 Sep;190:112936.
  • Kotanides H, Li Y, Malabunga M, et al. Bispecific targeting of PD-1 and PD-L1 enhances T-cell activation and antitumor immunity. Cancer Immunol Res. 2020 Oct;8(10):1300–1310.
  • Annese T, Tamma R, Ribatti D. Update in TIGIT Immune-Checkpoint Role in Cancer. Front Oncol. 2022;12:871085. doi: 10.3389/fonc.2022.871085
  • Rousseau A, Parisi C, Barlesi F. Anti-TIGIT therapies for solid tumors: a systematic review. ESMO Open. 2023 Apr;8(2):101184. doi: 10.1016/j.esmoop.2023.101184
  • Cho BC, Abreu DR, Hussein M, et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 2022 Jun;23(6):781–792.
  • Ma L, Gai J, Qiao P, et al. A novel bispecific nanobody with PD-L1/TIGIT dual immune checkpoint blockade. Biochem Biophys Res Commun. 2020 Oct 15;531(2):144–151. doi: 10.1016/j.bbrc.2020.07.072
  • Xiao Y, Chen P, Luo C, et al. Discovery of a novel anti PD-L1 X TIGIT bispecific antibody for the treatment of solid tumors. Cancer Treat Res Commun. 2021;29:100467. doi: 10.1016/j.ctarc.2021.100467
  • Zhong Z, Zhang M, Ning Y, et al. Development of a bispecific antibody targeting PD-L1 and TIGIT with optimal cytotoxicity. Sci Rep. 2022 Oct 26;12(1):18011. doi: 10.1038/s41598-022-22975-7
  • Mu S, Liang Z, Wang Y, et al. PD-L1/TIGIT bispecific antibody showed survival advantage in animal model. Clin Transl Med. 2022 May;12(5):e754.
  • Dai S, Huang W, Yuan Z, et al. Abstract 5525: an fc-competent bispecific antibody targeting PD-L1 and TIGIT induces strong immune responses and potent anti-tumor efficacy. Cancer Res. 2022 Jun 15;82:5525–5525.
  • Ruffo E, Wu RC, Bruno TC. et al. Lymphocyte-activation gene 3 (LAG3): the next immune checkpoint receptor. Semin Immunol. 2019 Apr;42:101305.
  • Qin S, Xu L, Yi M, et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. 2019 Nov 6;18(1):155. doi: 10.1186/s12943-019-1091-2
  • Tawbi HA, Schadendorf D, Lipson EJ, et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N Engl J Med. 2022 Jan 6;386(1):24–34. doi: 10.1056/NEJMoa2109970
  • Paik J. Nivolumab plus relatlimab: first approval. Drugs. 2022 Jun;82(8):925–931. doi: 10.1007/s40265-022-01723-1
  • Yap TA, LoRusso PM, Wong DJ, et al. A phase 1 first-in-human study of FS118, a tetravalent bispecific antibody targeting LAG-3 and PD-L1 in patients with advanced cancer and PD-L1 resistance. Clin Cancer Res. 2023 Mar 1;29(5):888–898. doi: 10.1158/1078-0432.CCR-22-1449
  • Kraman M, Faroudi M, Allen NL, et al. FS118, a bispecific antibody targeting LAG-3 and PD-L1, enhances T-Cell activation resulting in potent antitumor activity. Clin Cancer Res. 2020 Jul 1;26(13):3333–3344. doi: 10.1158/1078-0432.CCR-19-3548
  • Jiang H, Ni H, Zhang P, et al. PD-L1/LAG-3 bispecific antibody enhances tumor-specific immunity. Oncoimmunology. 2021;10(1):1943180. doi: 10.1080/2162402X.2021.1943180
  • Sung E, Ko M, Won JY, et al. LAG-3xPD-L1 bispecific antibody potentiates antitumor responses of T cells through dendritic cell activation. Mol Ther. 2022 Aug 3;30(8):2800–2816. doi: 10.1016/j.ymthe.2022.05.003
  • Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017 Mar;276(1):97–111. doi: 10.1111/imr.12520
  • Zhu C, Anderson AC, Schubart A, et al. The tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005 Dec;6(12):1245–1252.
  • Kang CW, Dutta A, Chang LY, et al. Apoptosis of tumor infiltrating effector TIM-3+CD8+ T cells in colon cancer. Sci Rep. 2015 Oct 23;5(1):15659. doi: 10.1038/srep15659
  • Hellmann MD, Bivi N, Calderon B, et al. Safety and immunogenicity of LY3415244, a bispecific antibody against TIM-3 and PD-L1, in patients with advanced solid tumors. Clin Cancer Res. 2021 May 15;27(10):2773–2781. doi: 10.1158/1078-0432.CCR-20-3716
  • Logtenberg MEW, Scheeren FA, Schumacher TN. The CD47-SIRPα immune checkpoint. Immunity. 2020 May 19;52(5):742–752.
  • Myers LM, Tal MC, Torrez Dulgeroff LB, et al. A functional subset of CD8. Nat Commun. 2019 Feb 15;10(1):794. doi: 10.1038/s41467-019-08637-9
  • Sallman DA, Al Malki MM, Asch AS, et al. Magrolimab in combination with azacitidine in patients with higher-risk myelodysplastic syndromes: final results of a phase ib study. J Clin Oncol. 2023 May 20;41(15):2815–2826. doi: 10.1200/JCO.22.01794
  • Pang WW, Pluvinage JV, Price EA, et al. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3011–3016. doi: 10.1073/pnas.1222861110
  • Champiat S, Cassier PA, Kotecki N, et al. Abstract 2129: predictive response biomarkers from phase I clinical trial of a SIRPalpha inhibitor BI765063, stand-alone and in combination with ezabenlimab, a PD1 inhibitor, in patients with advanced solid tumors. Cancer Res. 2023 Nov 30;83(7_Supplement):2129. doi: 10.1158/1538-7445.AM2023-2129
  • Chen SH, Dominik PK, Stanfield J, et al. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity. J Immunother Cancer. 2021 Oct;9(10):e003464.
  • Carneiro BA, Safran H, Beck JTT, et al. Phase 1 first-in-human study of PF-07257876, a novel CD47/PD-L1 bispecific checkpoint inhibitor, in patients with PD-1/PD-L1-refractory and -naïve advanced solid tumors. J Clin Oncol. 2023 Jun 01;41(16_suppl):2529–2529. doi: 10.1200/JCO.2023.41.16_suppl.2529
  • Wang Y, Ni H, Zhou S, et al. Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Cancer Immunol Immunother. 2021 Feb;70(2):365–376.
  • Wang J, Sun Y, Chu Q, et al. Abstract CT513: phase I study of IBI322 (anti-CD47/PD-L1 bispecific antibody) monotherapy therapy in patients with advanced solid tumors in China. Cancer Res. 2022;82(12_Supplement):CT513–CT513. doi: 10.1158/1538-7445.AM2022-CT513
  • Hashimoto K. CD137 as an attractive T cell Co-stimulatory target in the TNFRSF for immuno-oncology drug development. Cancers (Basel). 2021 May 11;13(10):2288.
  • van der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015 Jul;14(7):499–509. doi: 10.1038/nrd4597
  • Segal NH, Logan TF, Hodi FS, et al. Results from an Integrated Safety Analysis of Urelumab, an Agonist Anti-CD137 Monoclonal Antibody. Clin Cancer Res. 2017 Apr 15;23(8):1929–1936. doi: 10.1158/1078-0432.CCR-16-1272
  • Muik A, Adams HC 3rd, Gieseke F, et al. DuoBody-CD40x4-1BB induces dendritic-cell maturation and enhances T-cell activation through conditional CD40 and 4-1BB agonist activity. J Immunother Cancer. 2022 Jun;10(6):e004322.
  • Prenen H, Kyi C, Van Lancker G, et al. 136P phase I dose escalation study of MCLA-145, a bispecific antibody targeting CD137 and PD-L1 in solid tumors. Ann Oncol. 2021;32:S1436. doi: 10.1016/j.annonc.2021.10.155
  • Geuijen C, Tacken P, Wang LC, et al. A human CD137×PD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade. Nat Commun. 2021 Jul 21;12(1):4445. doi: 10.1038/s41467-021-24767-5
  • Zhai T, Wang C, Xu Y, et al. Generation of a safe and efficacious llama single-domain antibody fragment (vHH) targeting the membrane-proximal region of 4-1BB for engineering therapeutic bispecific antibodies for cancer. J Immunother Cancer. 2021 Jun;9(6):e002131.
  • Xue J, Sun Y, Li D, et al. Phase I safety and preliminary efficacy of PM1003, a bispecific antibody targeting PD-L1 and 4-1BB, in patients with advanced solid tumors. J Clin Oncol. 2023 Jun 01;41(16_suppl):e14511–e14511. doi: 10.1200/JCO.2023.41.16_suppl.e14511
  • Warmuth S, Gunde T, Snell D, et al. Engineering of a trispecific tumor-targeted immunotherapy incorporating 4-1BB co-stimulation and PD-L1 blockade. Oncoimmunology. 2021;10(1):2004661. doi: 10.1080/2162402X.2021.2004661
  • Jason L, Melissa J, Shirish G, et al. 732 First-in-human trial to evaluate safety, PK/PD and initial clinical activity of NM21–1480, an affinity-balanced PD-L1x4–1BBxHSA trispecific antibody: results of phase 1 dose escalation. J Immunother Cancer. 2022;10(Suppl 2):A764.
  • Lakins MA, Koers A, Giambalvo R, et al. FS222, a CD137/PD-L1 tetravalent bispecific antibody, exhibits low toxicity and antitumor activity in colorectal cancer models. Clin Cancer Res. 2020 Aug 1;26(15):4154–4167. doi: 10.1158/1078-0432.CCR-19-2958
  • Peper-Gabriel JK, Pavlidou M, Pattarini L, et al. The PD-L1/4-1BB bispecific antibody-anticalin fusion protein PRS-344/S095012 elicits strong T-Cell stimulation in a tumor-localized manner. Clin Cancer Res. 2022 Aug 02;28(15):3387–3399. doi: 10.1158/1078-0432.CCR-21-2762
  • Jeong S, Park E, Kim HD, et al. Novel anti-4-1BB×PD-L1 bispecific antibody augments anti-tumor immunity through tumor-directed T-cell activation and checkpoint blockade. J Immunother Cancer. 2021 Jul;9(7):e002428.
  • Huang PL, Kan HT, Hsu CH, et al. A bispecific antibody AP203 targeting PD-L1 and CD137 exerts potent antitumor activity without toxicity. J Transl Med. 2023 May 25;21(1):346. doi: 10.1186/s12967-023-04193-5
  • Gulley JL, Schlom J, Barcellos-Hoff MH, et al. Dual inhibition of TGF-β and PD-L1: a novel approach to cancer treatment. Mol Oncol. 2022 Jun;16(11):2117–2134.
  • Yi M, Zhang J, Li A, et al. The construction, expression, and enhanced anti-tumor activity of YM101: a bispecific antibody simultaneously targeting TGF-β and PD-L1. J Hematol Oncol. 2021 Feb 16;14(1):27. doi: 10.1186/s13045-021-01045-x
  • Yi M, Niu M, Wu Y, et al. Combination of oral STING agonist MSA-2 and anti-TGF-β/PD-L1 bispecific antibody YM101: a novel immune cocktail therapy for non-inflamed tumors. J Hematol Oncol. 2022 Oct 8;15(1):142. doi: 10.1186/s13045-022-01363-8
  • Yi M, Wu Y, Niu M, et al. Anti-TGF-β/PD-L1 bispecific antibody promotes T cell infiltration and exhibits enhanced antitumor activity in triple-negative breast cancer. J Immunother Cancer. 2022 Dec;10(12):e005543.
  • Lan Y, Zhang D, Xu C, et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci Transl Med. 2018 Jan 17;10(424). doi: 10.1126/scitranslmed.aan5488
  • Lind H, Gameiro SR, Jochems C, et al. Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. J Immunother Cancer. 2020 Feb;8(1):e000433.
  • Strauss J, Gatti-Mays ME, Cho BC, et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with human papillomavirus-associated malignancies. J Immunother Cancer. 2020 Dec;8(2):e001395.
  • Doi T, Fujiwara Y, Koyama T, et al. Phase I study of the bifunctional fusion protein bintrafusp Alfa in Asian patients with advanced solid tumors, including a hepatocellular carcinoma safety-assessment cohort. Oncology. 2020 Sep;25(9):e1292–e1302.
  • Paz-Ares L, Kim TM, Vicente D, et al. Bintrafusp Alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in second-line treatment of patients with NSCLC: results from an expansion cohort of a phase 1 trial. J Thorac Oncol. 2020 Jul;15(7):1210–1222.
  • Tan B, Khattak A, Felip E, et al. Bintrafusp Alfa, a Bifunctional Fusion Protein Targeting TGF-β and PD-L1, in Patients with Esophageal Adenocarcinoma: Results from a Phase 1 Cohort. Target Oncol. 2021 Jul;16(4):435–446.
  • Lin CC, Doi T, Muro K, et al. Bintrafusp Alfa, a bifunctional Fusion Protein Targeting TGFβ and PD-L1, in patients with esophageal squamous cell carcinoma: results from a phase 1 cohort in Asia. Target Oncol. 2021 Jul;16(4):447–459.
  • Cho BC, Daste A, Ravaud A, et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in advanced squamous cell carcinoma of the head and neck: results from a phase I cohort. J Immunother Cancer. 2020 Jul;8(2):e000664.
  • Spira A, Wertheim MS, Kim EJ, et al. Bintrafusp Alfa: a bifunctional fusion protein targeting PD-L1 and TGF-β, in patients with pretreated colorectal cancer: results from a phase I trial. Oncology. 2023 Feb 8;28(2):e124–e127. doi: 10.1093/oncolo/oyac254
  • Yoo C, Oh DY, Choi HJ, et al. Phase I study of bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with pretreated biliary tract cancer. J Immunother Cancer. 2020 May;8(1):e000564.
  • Liu D, Zhou J, Wang Y, et al. Bifunctional anti-PD-L1/TGF-βRII agent SHR-1701 in advanced solid tumors: a dose-escalation, dose-expansion, and clinical-expansion phase 1 trial. BMC Med. 2022 Oct 25;20(1):408. doi: 10.1186/s12916-022-02605-9
  • Feng J, Tang D, Wang J, et al. SHR-1701, a bifunctional fusion protein targeting PD-L1 and TGFβ, for recurrent or metastatic cervical cancer: a clinical expansion cohort of a phase I study. Clin Cancer Res. 2022 Dec 15;28(24):5297–5305. doi: 10.1158/1078-0432.CCR-22-0346
  • Cheng B, Ding K, Chen P, et al. Anti-PD-L1/TGF-βR fusion protein (SHR-1701) overcomes disrupted lymphocyte recovery-induced resistance to PD-1/PD-L1 inhibitors in lung cancer. Cancer Commun (Lond). 2022 Jan;42(1):17–36.
  • Guo Y, Liu B, Lv D, et al. Phase I/IIa study of PM8001, a bifunctional fusion protein targeting PD-L1 and TGF-β, in patients with advanced tumors. [meeting abstract]. J Clin Oncol. 2022;40(16):2512–2512. doi: 10.1200/JCO.2022.40.16_suppl.2512
  • van de Donk NWCJ, Zweegman S. T-cell-engaging bispecific antibodies in cancer. Lancet. 2023 Jul 08;402(10396):142–158.
  • Liu L, Chen J, Bae J, et al. Rejuvenation of tumour-specific T cells through bispecific antibodies targeting PD-L1 on dendritic cells. Nat Biomed Eng. 2021 Nov;5(11):1261–1273.
  • Cho J, Tae N, Ahn JH, et al. Bispecific antibody-bound t cells as a novel anticancer immunotherapy. Biomol Ther. 2022 Sep 01;30(5):418–426. doi: 10.4062/biomolther.2022.015
  • Jogalekar MP, Rajendran RL, Khan F, et al. CAR T-Cell-based gene therapy for cancers: new perspectives, challenges, and clinical developments. Front Immunol. 2022;13:925985. doi: 10.3389/fimmu.2022.925985
  • Bajor M, Graczyk-Jarzynka A, Marhelava K, et al. PD-L1 CAR effector cells induce self-amplifying cytotoxic effects against target cells. J Immunother Cancer. 2022 Jan;10(1):e002500.
  • Li D, English H, Hong J, et al. A novel PD-L1-targeted shark V. Mol Ther Oncolytics. 2022 Mar 17;24:849–863.
  • Yi M, Zheng X, Niu M, et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022 Jan 21;21(1):28. doi: 10.1186/s12943-021-01489-2
  • Hutchings M, Morschhauser F, Iacoboni G, et al. Glofitamab, a novel, bivalent CD20-targeting T-Cell-engaging bispecific antibody, induces durable complete remissions in relapsed or refractory B-Cell lymphoma: a phase I trial. J Clin Oncol. 2021 Jun 20;39(18):1959–1970. doi: 10.1200/JCO.20.03175
  • Moreau P, Girgis S, Goldberg JD. Teclistamab in Relapsed or Refractory Multiple Myeloma. Reply N Engl J Med. 2022 Nov 03;387(18):1722–1723.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.