137
Views
0
CrossRef citations to date
0
Altmetric
Review

A modest proposal: targeting αv integrin-mediated activation of latent TGFbeta as a novel therapeutic approach to treat scleroderma fibrosis

ORCID Icon, &
Pages 279-285 | Received 04 Nov 2023, Accepted 22 Feb 2024, Published online: 26 Feb 2024

References

  • Anzano MA, Roberts AB, Meyers CA, et al. Synergistic interaction of two classes of transforming growth factors from murine sarcoma cells. Cancer Res. 1982 Nov;42(11):4776–4778.
  • Frolik CA, Dart LL, Meyers CA, et al. Purification and initial characterization of a type beta transforming growth factor from human placenta. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3676–3680.
  • Roberts AB, Sporn MB. Transforming growth factors. Cancer Surv. 1985;4(4):683–705.
  • Puolakkainen PA, Reed MJ, Gombotz WR, et al. Acceleration of wound healing in aged rats by topical application of transforming growth factor-beta(1). Wound Repair Regen. 1995 Jul;3(3):330–339.
  • Beck LS, Deguzman L, Lee WP, et al. TGF-beta 1 accelerates wound healing: reversal of steroid-impaired healing in rats and rabbits. Growth Factors. 1991;5(4):295–304. doi: 10.3109/08977199109000293
  • Mustoe TA, Pierce GF, Thomason A, et al. Accelerated healing of incisional wounds in rats induced by transforming growth factor-beta. Science. 1987 Sep 11;237(4820):1333–1336.
  • Roberts CJ, Birkenmeier TM, McQuillan JJ, et al. Transforming growth factor beta stimulates the expression of fibronectin and of both subunits of the human fibronectin receptor by cultured human lung fibroblasts. J Biol Chem. 1988 Apr 5;263(10):4586–4592. doi: 10.1016/S0021-9258(18)68822-2
  • Montesano R, Orci L. Transforming growth factor beta stimulates collagen-matrix contraction by fibroblasts: implications for wound healing. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4894–4897. doi: 10.1073/pnas.85.13.4894
  • Varga J, Rosenbloom J, Jimenez SA. Transforming growth factor beta (TGF beta) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRnas in normal human dermal fibroblasts. Biochem J. 1987 Nov 1;247(3):597–604.
  • Krummel TM, Michna BA, Thomas BL, et al. Transforming growth factor beta (TGF-beta) induces fibrosis in a fetal wound model. J Pediatr Surg. 1988 Jul;23(7):647–652.
  • Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA. 1986 Jun;83(12):4167–4171.
  • Mulé JJ, Schwarz SL, Roberts AB, et al. Transforming growth factor-beta inhibits the in vitro generation of lymphokine-activated killer cells and cytotoxic T cells. Cancer Immunol Immunother. 1988;26(2):95–100. doi: 10.1007/BF00205600
  • Keller JR, Mantel C, Sing GK, et al. Transforming growth factor beta 1 selectively regulates early murine hematopoietic progenitors and inhibits the growth of IL-3-dependent myeloid leukemia cell lines. J Exp Med. 1988 Aug 1;168(2):737–750. doi: 10.1084/jem.168.2.737
  • Sporn MB, Roberts AB, Wakefield LM, et al. Transforming growth factor-beta and suppression of carcinogenesis. Princess Takamatsu Symp. 1989;20:259–266.
  • Sing GK, Keller JR, Ellingsworth LR, et al. Transforming growth factor beta selectively inhibits normal and leukemic human bone marrow cell growth in vitro. Blood. 1988 Nov;72(5):1504–1511.
  • Franklin TJ. Therapeutic approaches to organ fibrosis. Int J Biochem Cell Biol. 1997 Jan;29(1):79–89. doi: 10.1016/S1357-2725(96)00121-5
  • Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 1997 Sep;8(3):171–179. doi: 10.1016/S1359-6101(97)00010-5
  • Leask A. Scar wars: is TGFbeta the phantom menace in scleroderma? Arthritis Res Ther. 2006;8(4):213. doi: 10.1186/ar1976
  • Leask A. Transcriptional profiling of the scleroderma fibroblast reveals a potential role for connective tissue growth factor (CTGF) in pathological fibrosis. Keio J Med. 2004 Jun;53(2):74–77. doi: 10.2302/kjm.53.74
  • Thannickal VJ, Lee DY, White ES, et al. Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem. 2003 Apr 4;278(14):12384–12389. doi: 10.1074/jbc.M208544200
  • Leask A, Holmes A, Black CM, et al. Connective tissue growth factor gene regulation. Requirements for its induction by transforming growth factor-beta 2 in fibroblasts. J Biol Chem. 2003 Apr 11;278(15):13008–13015. doi: 10.1074/jbc.M210366200
  • Mulder KM. Role of Ras and mapks in TGFbeta signaling. Cytokine Growth Factor Rev. 2000 Mar;11(1–2):23–35. doi: 10.1016/S1359-6101(99)00026-X
  • Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012 Oct;13(10):616–630. doi: 10.1038/nrm3434
  • Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 2019 Feb 26;12(570). doi: 10.1126/scisignal.aav5183
  • Brown PD, Wakefield LM, Levinson AD, et al. Physiochemical activation of recombinant latent transforming growth factor-beta’s 1, 2, and 3. Growth Factors. 1990;3(1):35–43. doi: 10.3109/08977199009037500
  • Lyons RM, Keski-Oja J, Moses HL. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J Cell Bio. 1988;106(5):1659–1665. doi: 10.1083/jcb.106.5.1659
  • Wipff P-J, Hinz B. Integrins and the activation of latent transforming growth factor [beta]1 - an intimate relationship. Eur J Cell Biol. 2008;87(8–9):601–615.
  • Hinz B. The extracellular matrix and transforming growth factor-β1: tale of a strained relationship. Matrix Biol. 2015 Sep;47:54–65. doi: 10.1016/j.matbio.2015.05.006
  • Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997 Dec 4;390(6659):465–471. doi: 10.1038/37284
  • Kretzschmar M, Massagué J. Smads: mediators and regulators of TGF-beta signaling. Curr Opin Genet Dev. 1998 Feb;8(1):103–111. doi: 10.1016/S0959-437X(98)80069-5
  • Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004 May;18(7):816–827. doi: 10.1096/fj.03-1273rev
  • Finnson KW, Almadani Y, Philip A. Non-canonical (non-SMAD2/3) TGF-β signaling in fibrosis: mechanisms and targets. Semin Cell Dev Biol. 2020 May;101:115–122.
  • Frey RS, Mulder KM. Involvement of extracellular signal-regulated kinase 2 and stress-activated protein kinase/Jun N-terminal kinase activation by transforming growth factor beta in the negative growth control of breast cancer cells. Cancer Res. 1997 Feb 15;57(4):628–33.
  • Verrecchia F, Chu ML, Mauviel A. Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem. 2001 May 18;276(20):17058–17062.
  • Piek E, Ju WJ, Heyer J, et al. Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. J Biol Chem. 2001 Jun 8;276(23):19945–19953. doi: 10.1074/jbc.M102382200
  • Holmes A, Abraham DJ, Sa S, et al. CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem. 2001 Apr 6;276(14):10594–10601. doi: 10.1074/jbc.M010149200
  • Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002 May;3(5):349–363.
  • Carthy JM. TGFβ signaling and the control of myofibroblast differentiation: implications for chronic inflammatory disorders. J Cell Physiol. 2018 Jan;233(1):98–106. doi: 10.1002/jcp.25879
  • Peidl A, Perbal B, Leask A, et al. Yin/Yang expression of CCN family members: transforming growth factor beta 1, via ALK5/FAK/MEK, induces CCN1 and CCN2, yet suppresses CCN3, expression in human dermal fibroblasts. PloS One. 2019 Jun 6;14(6):e0218178.
  • Shi-Wen X, Parapuram SK, Pala D, et al. Requirement of transforming growth factor beta-activated kinase 1 for transforming growth factor beta-induced alpha-smooth muscle actin expression and extracellular matrix contraction in fibroblasts. Arthritis Rheum. 2009 Jan;60(1):234–241.
  • Murphy-Marshman H, Quensel K, Shi-Wen X, et al. Antioxidants and NOX1/NOX4 inhibition blocks TGFβ1-induced CCN2 and α-SMA expression in dermal and gingival fibroblasts. PloS One. 2017 Oct 19;12(10):e0186740. doi: 10.1371/journal.pone.0186740
  • Shi-Wen X, Racanelli M, Ali A, et al. Verteporfin inhibits the persistent fibrotic phenotype of lesional scleroderma dermal fibroblasts. J Cell Commun Signal. 2021 Mar;15(1):71–80. doi: 10.1007/s12079-020-00596-x
  • Liu S, Shi-Wen X, Abraham DJ, et al. CCN2 is required for bleomycin-induced skin fibrosis in mice. Arthritis Rheum. 2011 Jan;63(1):239–246.
  • Liu S, Parapuram SK, Leask A. Brief report: fibrosis caused by loss of PTEN expression in mouse fibroblasts is crucially dependent on CCN2. Arthritis Rheum. 2013 Nov;65(11):2940–2944. doi: 10.1002/art.38121
  • Petrosino JM, Leask A, Accornero F. Genetic manipulation of CCN2/CTGF unveils cell-specific ECM-remodeling effects in injured skeletal muscle. FASEB J. 2019 Feb;33(2):2047–2057. doi: 10.1096/fj.201800622RR
  • Kinashi H, Falke LL, Nguyen TQ, et al. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis. Kidney Int. 2017 Oct;92(4):850–863.
  • Dwivedi N, Tao S, Jamadar A, et al. Epithelial vasopressin type-2 receptors regulate myofibroblasts by a YAP-CCN2-Dependent mechanism in polycystic kidney disease. J Am Soc Nephrol. 2020 Aug;31(8):1697–1710.
  • Makino K, Makino T, Stawski L, et al. Anti-connective tissue growth factor (CTGF/CCN2) monoclonal antibody attenuates skin fibrosis in mice models of systemic sclerosis. Arthritis Res Ther. 2017 Jun 13;19(1):134. doi: 10.1186/s13075-017-1356-3
  • Leask A. Signaling in fibrosis: targeting the TGFbeta, endothelin-1 and CCN2 axis in scleroderma frontiers in bioscience. Elite. 2009;1 E(1):115–122.
  • Leroy EC, Smith EA, Kahaleh MB, et al. A strategy for determining the pathogenesis of systemic sclerosis. Is transforming growth factor beta the answer? Arthritis Rheum. 1989 Jul;32(7):817–825.
  • Needleman BW, Choi J, Burrows-Mezu A, et al. Secretion and binding of transforming growth factor beta by scleroderma and normal dermal fibroblasts. Arthritis Rheum. 1990 May;33(5):650–656.
  • Xu WD, Leroy EC, Smith EA. Fibronectin release by systemic sclerosis and normal dermal fibroblasts in response to TGF-beta. J Rheumatol. 1991 Feb;18(2):241–246.
  • Majewski S, Hunzelmann N, Schirren CG, et al. Increased adhesion of fibroblasts from patients with scleroderma to extracellular matrix components: in vitro modulation by IFN-gamma but not by TGF-beta. J Invest Dermatol. 1992 Jan;98(1):86–91.
  • Kikuchi K, Hartl CW, Smith EA, et al. Direct demonstration of transcriptional activation of collagen gene expression in systemic sclerosis fibroblasts: insensitivity to TGF beta 1 stimulation. Biochem Biophys Res Commun. 1992 Aug 31;187(1):45–50.
  • Falanga V, Gerhardt CO, Dasch JR, et al. Skin distribution and differential expression of transforming growth factor beta 1 and beta 2. J Dermatol Sci. 1992 May;3(3):131–136.
  • Deguchi Y. Spontaneous increase of transforming growth factor beta production by bronchoalveolar mononuclear cells of patients with systemic autoimmune diseases affecting the lung. Ann Rheum Dis. 1992 Mar;51(3):362–365. doi: 10.1136/ard.51.3.362
  • Higley H, Persichitte K, Chu S, et al. Immunocytochemical localization and serologic detection of transforming growth factor beta 1. Association with type I procollagen and inflammatory cell markers in diffuse and limited systemic sclerosis, morphea, and Raynaud’s phenomenon. Arthritis Rheum. 1994 Feb;37(2):278–288.
  • McWhirter A, Colosetti P, Rubin K, et al. Collagen type I is not under autocrine control by transforming growth factor-beta 1 in normal and scleroderma fibroblasts. Lab Invest. 1994 Dec;71(6):885–894.
  • Jimenez SA, Hitraya E, Varga J. Pathogenesis of scleroderma. Collagen. Rheum Dis Clin North Am. 1996 Nov;22(4):647–74. doi: 10.1016/S0889-857X(05)70294-5
  • Querfeld C, Eckes B. Huerkamp C, et al Expression of TGF-beta 1, -beta 2 and -beta 3 in localized and systemic scleroderma. J Dermatol Sci. 1999 Sep;21(1):13–22.
  • Abraham DJ, Shiwen X, Black CM, et al. Tumor necrosis factor alpha suppresses the induction of connective tissue growth factor by transforming growth factor-beta in normal and scleroderma fibroblasts. J Biol Chem. 2000 May 19;275(20):15220–15225. doi: 10.1074/jbc.275.20.15220
  • Bhattacharyya S, Chen SJ, Wu M, et al. Smad-independent transforming growth factor-beta regulation of early growth response-1 and sustained expression in fibrosis: implications for scleroderma. Am J Pathol. 2008 Oct;173(4):1085–1099.
  • Bonniaud P, Margetts PJ, Kolb M, et al. Progressive transforming growth factor β1–induced lung fibrosis is blocked by an orally active ALK5 kinase inhibitor. Am J Respir Crit Care Med. 2005;171(8):889–898. doi: 10.1164/rccm.200405-612OC
  • Tan SM, Zhang Y, Connelly KA, et al. Targeted inhibition of activin receptor-like kinase 5 signaling attenuates cardiac dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol. 2010;298(5):H1415–H1425. doi: 10.1152/ajpheart.01048.2009
  • Moon JA, Kim HT, Cho IS, et al. IN-1130, a novel transforming growth factor-β type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosis in obstructive nephropathy. Kidney Int. 2006;70(7):1234–1243. doi: 10.1038/sj.ki.5001775
  • Medina C, Santos-Martinez MJ, Santana A, et al. Transforming growth factor-β type I receptor (ALK5) and smad proteins mediate TIMP-1 and collagen synthesis in experimental intestinal fibrosis. J Pathol. 2011;224(4):461–472. doi: 10.1002/path.2870
  • Higashiyama H, Yoshimoto D, Kaise T, et al. Inhibition of activin receptor-like kinase 5 attenuates bleomycin-induced pulmonary fibrosis. Exp Mol Pathol. 2007 Aug;83(1):39–46.
  • Decato BE, Ammar R, Reinke-Breen L, et al. Transcriptome analysis reveals key genes modulated by ALK5 inhibition in a bleomycin model of systemic sclerosis. Rheumatology (Oxford). 2022 Apr 11;61(4):1717–1727. doi: 10.1093/rheumatology/keab580
  • Chen Y, Shi-Wen X, Eastwood M, et al. Contribution of activin receptor-like kinase 5 (transforming growth factor beta receptor type I) signaling to the fibrotic phenotype of scleroderma fibroblasts. Arthritis Rheum. 2006 Apr;54(4):1309–1316.
  • Ishida W, Mori Y, Lakos G, et al. Intracellular TGF-beta receptor blockade abrogates Smad-dependent fibroblast activation in vitro and in vivo. J Invest Dermatol. 2006 Aug;126(8):1733–1744.
  • Shi-Wen X, Thompson K, Khan K, et al. Focal adhesion kinase and reactive oxygen species contribute to the persistent fibrotic phenotype of lesional scleroderma fibroblasts. Rheumatology (Oxford). 2012 Dec;51(12):2146–2154.
  • Leask A. The hard problem: mechanotransduction perpetuates the myofibroblast phenotype in scleroderma fibrosis. Wound Repair Regen. 2021 Jul;29(4):582–587. doi: 10.1111/wrr.12889
  • Denton CP, Merkel PA, Furst DE, et al. Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 2007 Jan;56(1):323–333.
  • Rice LM, Padilla CM, McLaughlin SR, et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest. 2015 Jul 1;125(7):2795–2807. doi: 10.1172/JCI77958
  • Munger JS, Huang X, Kawakatsu H, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999 Feb 5;96(3):319–328.
  • Liu S, Kapoor M, Denton CP, et al. Loss of beta1 integrin in mouse fibroblasts results in resistance to skin scleroderma in a mouse model. Arthritis Rheum. 2009 Sep;60(9):2817–2821.
  • Liu S, Xu SW. Blumbach K et al expression of integrin beta1 by fibroblasts is required for tissue repair in vivo. J Cell Sci. 2010 Nov 1;123(Pt 21):3674–3682. doi: 10.1242/jcs.070672
  • Henderson NC, Arnold TD, Katamura Y, et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med. 2013;19:1617–1624.
  • Leask A, Hutchenreuther J. Activation of latent TGFβ by αvβ 1 integrin: of potential importance in myofibroblast activation in fibrosis. J Cell Commun Signal. 2014 Jun;8(2):171–172. doi: 10.1007/s12079-014-0221-2
  • Asano Y, Ihn H, Yamane K, et al. Increased expression of integrin alpha(v)beta3 contributes to the establishment of autocrine TGF-beta signaling in scleroderma fibroblasts. J Immunol. 2005 Dec 1;175(11):7708–7718.
  • Asano Y, Ihn H, Yamane K, et al. Involvement of alphavbeta5 integrin-mediated activation of latent transforming growth factor beta1 in autocrine transforming growth factor beta signaling in systemic sclerosis fibroblasts. Arthritis Rheum. 2005 Sep;52(9):2897–2905.
  • Asano Y, Ihn H, Yamane K, et al. Increased expression of integrin αvβ5 induces the myofibroblastic differentiation of dermal fibroblasts. Am J Pathol. 2006;168(2):499–510. doi: 10.2353/ajpath.2006.041306
  • Asano Y, Ihn H, Jinnin M, et al. Involvement of alphavbeta5 integrin in the establishment of autocrine TGF-beta signaling in dermal fibroblasts derived from localized scleroderma. J Invest Dermatol. 2006 Aug;126(8):1761–1769.
  • [cited 2024 Jan 29]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Bexotegrast
  • [cited 2023 Nov 1]. Available from: https://pliantrx.com/pln-74809/
  • Leask A, Naik A, Stratton RJ. Back to the future: targeting the extracellular matrix to treat systemic sclerosis. Nat Rev Rheumatol. 2023 Nov;19(11):713–723. doi: 10.1038/s41584-023-01032-1
  • Slack RJ, Macdonald SJF, Roper JA, et al. Emerging therapeutic opportunities for integrin inhibitors. Nat Rev Drug Discov. 2022 Jan;21(1):60–78.
  • Łasiñska I, Mackiewicz J. Integrins as a new target for cancer treatment. Anticancer Agents Med Chem. 2019;19(5):580–586. doi: 10.2174/1871520618666181119103413
  • Zhang J, Wang T, Saigal A, et al. Discovery of a new class of integrin antibodies for fibrosis. Sci Rep. 2021 Jan 22;11(1):2118. doi: 10.1038/s41598-021-81253-0
  • Zhou X, Zhang J, Haimbach R, et al. An integrin antagonist (MK-0429) decreases proteinuria and renal fibrosis in the ZSF1 rat diabetic nephropathy model. Pharmacol Res Perspect. 2017 Oct;5(5):e00354.
  • Chitturi P, Xu S, Ahmed Abdi B, et al. Tripterygium wilfordii derivative celastrol, a YAP inhibitor, has antifibrotic effects in systemic sclerosis. Ann Rheum Dis. 2023 Sep;82(9):1191–1204.
  • Parapuram SK, Shi-Wen X, Elliott C, et al. Loss of PTEN expression by dermal fibroblasts causes skin fibrosis. J Invest Dermatol. 2011 Oct;131(10):1996–2003.
  • Hinz B, CA M, Coelho NM. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp Cell Res. 2019 Jun 1;379(1):119–128.
  • Ogawa R, Hsu CK. Mechanobiological dysregulation of the epidermis and dermis in skin disorders and in degeneration. J Cell Mol Med. 2013 Jul;17(7):817–822. doi: 10.1111/jcmm.12060
  • Sawant M, Wang F, Koester J, et al. Ablation of integrin-mediated cell-collagen communication alleviates fibrosis. Ann Rheum Dis. 2023 Nov;82(11):1474–1486.
  • Huang X, Yang N, Fiore VF, et al. Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am J Respir Cell Mol Biol. 2012 Sep;47(3):340–348.
  • Domsic RT, Gao S, Laffoon M, et al. Defining the optimal disease duration of early diffuse systemic sclerosis for clinical trial design. Rheumatology (Oxford). 2021;60(10):4662–4670. doi: 10.1093/rheumatology/keab075
  • Liu S, Ren J, Ten Dijke P. Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther. 2021 Jan 8;6(1):8.
  • Mori T, Kawara S, Shinozaki M, et al. Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: a mouse fibrosis model. J Cell Physiol. 1999 Oct;181(1):153–159.
  • Mullard A. Pliant’s integrin inhibitor boosted by phase II IPF data. Nat Rev Drug Discov. 2022 Sep;21(9):626. doi: 10.1038/d41573-022-00135-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.