194
Views
0
CrossRef citations to date
0
Altmetric
Review

Investigational new drugs for the treatment of chronic renal failure: an overview of the literature

, , , , , , & show all
Pages 319-334 | Received 08 Oct 2023, Accepted 29 Feb 2024, Published online: 28 Mar 2024

References

  • Kidney Disease: Improving Global Outcomes CKD Work Group. KDIGO. 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2012;3:S1–S150.
  • Gugliucci A, Menini T, et al. The axis AGE-RAGE-soluble RAGE and oxidative stress in chronic kidney disease. Adv Exp Med Biol. 2014;824:191–208.
  • Smit AJ, Gerrits EG. Skin autofluorescence as a measure of advanced glycation endproduct deposition: a novel risk marker in chronic kidney disease. Curr Opin Nephrol Hypertens. 2010;19(6):527–533.
  • Koyama H, Nishizawa Y. AGEs/RAGE in CKD: irreversible metabolic memory road toward CVD? Eur J Clin Invest. 2010;40(7):623–635.
  • Bikbov B, Purcell CA, Levey AS, GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2020;395(10225):709–733. doi: 10.1016/S0140-6736(20)30045-3
  • Flagg AJ. Chronic renal therapy. Nurs Clin North Am. 2018 Dec;53(4):511–519.
  • National Kidney Foundation. A to Z health guide: about chronic kidney disease. 2017 [cited 2018 Feb 8]. Available from: https://www.kidney.org/atoz/content/about-chronic-kidney-disease
  • Pugh-Clark K, Read SC, Sim J. Symptom experience in non-dialysis-dependent chronic kidney disease: a qualitative descriptive study. J Ren Care. 2017;43(4):197–208.
  • Almutary H, Douglas C, Bonner A. Towards a symptom cluster model in chronic kidney disease: a structural equation approach. J Adv Nurs. 2017;73(10):2450–2461.
  • de Menezes Hf, de Souza Fa, Ammtf R, et al. Sociodemographic, clinical and subjective characteristics of patients with chronic kidney disease taken in the nursing consultation. J Nurs UFPE On Line. 2017;11(5):1858–1866.
  • Stenvinkel P, Heimbürger O, Paultre F, et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999;55(5):1899–1911. doi: 10.1046/j.1523-1755.1999.00422.x
  • Zimmermann J, Herrlinger S, Pruy A, et al. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int. 1999;55(2):648–658. doi: 10.1046/j.1523-1755.1999.00273.x
  • Gupta J, Mitra N, Kanetsky PA, et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin J Am Soc Nephrol. 2012;7(12):1938–1946. doi: 10.2215/CJN.03500412
  • Inker LA, Astor BC, Fox CH, et al. National kidney Foundation, K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2014;63(5):713–735. doi: 10.1053/j.ajkd.2014.01.416
  • Garcin A. Care of the patient with chronic kidney disease. Medsurg Nurs. 2015;24(5):4–7.
  • Vassalotti JA, Centor R, Turner BJ, et al. Practical approach to detection and management of chronic kidney disease for the primary care clinician. Am J Med. 2016;129(2):153–162. doi: 10.1016/j.amjmed.2015.08.025
  • Prasad-Reddy L, Isaacs D, Kantorovich A. Considerations and controversies in managing chronic kidney disease: an update. Am J Health Syst Pharm. 2017;74(11):795–810.
  • Williams JKY. Management strategies for patients with diabetic kidney disease and chronic kidney disease in diabetes. Nurs Clin North Am. 2017;53(4):575–587. doi: 10.1016/j.cnur.2017.07.007
  • Wright EM, Turk E. The sodium/glucose cotransport family SLC5. Pflugers Arch. 2004;447(5):510–518.
  • Zelniker, Zelniker TA, Braunwald E, et al. Cardiorenal effects of sodium-glucose cotransporter 2 inhibitors. JACC. 2020;75(4):422–434. doi: 10.1016/j.jacc.2019.11.031
  • Heerspink HJ, Perkins BA, Fitchett DH, et al. Sodium glucose cotrans- porter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, po- tential mechanisms, and clinical applications. Circulation. 2016;134:752–772.
  • Chertow, Glenn GM, Vart P, et al. Effects of Dapagliflozin in stage 4 chronic kidney disease. JASN. 2021;32(9):2352–2361. doi: 10.1681/ASN.2021020167
  • Wheeler, Wheeler DC, Stefansson BV, et al. The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrol Dial Transplant. 2020;35(10):1700–1711. doi: 10.1093/ndt/gfaa234
  • Herrington WG, Staplin N, Wanner C, et al. Empagliflozin in patients with chronic kidney disease. N Engl J Med. 2023;388:2.
  • Perkovic, Perkovic V, Jardine MJ, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):24. doi: 10.1056/NEJMoa1811744
  • Chen, Chen TK, Sperati CJ, et al. Reducing kidney function decline in patients with CKD: core curriculum 2021. Am J Kidney Dis. 2021;77(6):969–983. doi: 10.1053/j.ajkd.2020.12.022
  • Zhao, ZHAO X, LIU G, et al. Liraglutide inhibits autophagy and apotosis in kidney cells. Int J Mol Med. 2015;35(3):684–692.
  • Bullock, Bullock BP, Heller RS, et al. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology. 1996;137(7):2968–2978. doi: 10.1210/endo.137.7.8770921
  • Wajcberg, Wajcberg E, Amarah A, et al. Liraglutide in the management of type 2 diabetes. Drug Des Devel Ther. 2010;4:279–290.
  • Bakris, Bakris GL, Agarwal R, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383(23):2219–2229. doi: 10.1056/NEJMoa2025845
  • Pitt, Pitt B, Filippatos G, et al. Cardiovascular events with finerenone in kidney disease and tupe 2 diabetes. N Engl J Med. 2021;385(24):2252–2263. doi: 10.1056/NEJMoa2110956
  • Rossing, Rossing P, Anker SD, et al. Finerenone in patients with chronic kidney disease and type 2 diabetes by sodium-glucose cotransporter 2 inhibitor treatment: the FIDELITY analysis. Diabetes Care. 2022;45(12):2991–2998. doi: 10.2337/dc22-0294
  • Rossing, Rossing P, Filippatos G, et al. Finerenone in predominantly advanced CKD and type 2 diabetes with or without sodium-glucose cotransporter-2 inhibitor therapy. Kidney Int Rep. 2022;7(1):36–45. doi: 10.1016/j.ekir.2021.10.008
  • Benigni A, Colosio V, Brena C, et al. Unse- lective inhibition of endothelin receptors reduces renal dysfunction in experimental diabetes. Diabetes. 1998;47(3):450–456.
  • Sasser, Sasser JM, Sullivan JC, et al. Endothelin A receptor blockade reduces diabetic renal injury via an anti-inflammatory mechanism. J Am Soc Nephrol. 2007;18(1):143–154. doi: 10.1681/ASN.2006030208
  • Gomez-Garre D, Ruiz-Ortega M, Ortego M, et al. Effects and interactions of endothelin-1 and angiotensin II on ma- trix protein expression and synthesis and mesangial cell growth. Hypertension. 1996;27(4):885–892.
  • Sorokin A, Kohan DE. Physiology and pathology of endo- thelin-1 in renal mesangium. Am J Physiol Renal Physiol. 2003;285(4):F579–F589.
  • Asaba K, Tojo A, Onozato ML, et al. Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int. 2005;67(5):1890–1898.
  • Heerspink, Heerspink HJL, Andress DL, et al. Rationale and protocol of the study of diabetic nephropathy with atrasentan (SONAR) trial: a clinical trial design novel to diabetic nephropathy. Diabetes, Obesity Meta. 2018;20(6):1369–1376. doi: 10.1111/dom.13245
  • Waijer, Waijer SW, Gansevoort RT, et al. The effect of Atrasentan on kidney and heart failure outcomes by baseline albuminuria and kidney function. A post hoc analysis of the SONAR randomized trial. CJASN. 2021;16(12):1824–1832. doi: 10.2215/CJN.07340521
  • Mann JFE, Green D, Jamerson K, et al. ASCEND Study Group: avosentan for overt diabetic nephropathy. J Am Soc Nephrol. 2010;21(3):527–535.
  • De Zeeuw D, coll B, Andress D, et al. The endothelin antagonist Atrasentan lowers residual albuminuria in patients with type 2 diabetic nephropathy. J Am Soc Nephrol. 2014;25(5):1083–1093. doi: 10.1681/ASN.2013080830
  • Schievink, Schievink B, de Zeeuw D, et al. Prediction of the effect of atrasentan on renal and heart outcomes based on short-term changes in multiple risk markers. Eur J Prev Cardiol. 2016;23(7):758–768. doi: 10.1177/2047487315598709
  • Cho P. Pirfenidone: an anti-fibrotic and cytoprotective agent as therapy for progressive kidney disease. Expert Opin Investig Drugs. 2010;19(2):275–283. doi: 10.1517/13543780903501539
  • Schlondorff DO. Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int. 2008;74(7):860–866.
  • Chen P, Liu H, Ni HF, et al. Improved mitochondrial function underlies the protective effect of pirfenidone against tubulointerstitial fibrosis in 5/6 nephrectomized rats. PLoS One. 2013;8(12):e83593. doi: 10.1371/journal.pone.0083593
  • Okamura DM, Pasichnyk K, Lopez-Guisa JM, et al. Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. Am J Physiol Renal Physiol. 2011;300(1):F245–F253. doi: 10.1152/ajprenal.00326.2010
  • Small DM, Coombes JS, Bennett N, et al. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology(Carltron). 2012;17:311–321.
  • Border WA, Okuda S, Languino LR, et al. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature. 1990;346(6282):371–374.
  • Border WA, Ruoslahti E. Transforming growth factor-beta 1 induces extracellular matrix formation in glomerulonephritis. Cell Differ Dev. 1990;32(3)425–431.
  • Sharma K, Ziyadeh FN, Alzahabi B, et al. Increased renal production of transforming growth factor-beta1 in patients with type II diabetes. Diabetes. 1997;46(5):854–859. doi: 10.2337/diab.46.5.854
  • Ziyadeh FN. Role of transforming growth factor beta in diabetic nephropathy. Exp Nephrol. 1994;2(2):137.
  • Iyer SN, Gurujeyalakshmi G, Giri SN. Effects of pirfenidone on transforming growth factor-beta gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther. 1999;291(1):367–373.
  • Iyer SN, Gurujeyalakshmi G, Giri SN. Effects of pirfenidone on procollagen gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther. 1999;289(1):211–218.
  • Shihab FS, Bennett WM, Yi H, et al. Effect of pirfenidone on apoptosis-regulatory genes in chronic cyclosporine nephrotoxicity. Transplantation. 2005;79(4):419–426.
  • Ruiz-Ortega, Ruiz-Ortega M, Lamas S, et al. Antifibrotic agents for the management of CKD: a review. Am J Kidney Dis. 2022;80(2):251–263. doi: 10.1053/j.ajkd.2021.11.010
  • Cho ME, Smith DC, Branton MH, et al. Pir- fenidone slows renal function decline in patients with focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2007;2(5):906–913.
  • la Mora L-D, Sanchez-Roque C, Montoya-Buelna M, et al. Role and new insight of pirfenidone in fibrotic diseases. Int J Med Sci. 2015;12(11):840–847. doi: 10.7150/ijms.11579
  • Jiang C, Huang H, Liu J, et al. Adverse events of pirfenidone for the treatment of pulmonary fibrosis: a meta-analysis of randomized con- trolled trials. PLoS One. 2012;7(10):47024.
  • Et. All P, Raskin P, Toto RD. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011;365(4):327–336.
  • Dinkova-Kostova AT, Liby KT, Ste- Phenson KK, et al. Extremely potent tri- terpenoid inducers of the phase 2 re- sponse: correlations of protection against oxidant and inflammatory stress. Proc Natl Acad Sci U S A. 2005;102(12):4584–4589. doi: 10.1073/pnas.0500815102
  • Li J, Stein TD, Johnson JA. Genetic dissection of systemic autoimmune dis- ease in Nrf2-deficient mice. Physiol. Genomics. 2004;18(3)261–272.
  • Yoh K, Itoh K, Enomoto A, et al. Nrf2- deficient female mice develop lupus-like autoimmune nephritis. Kidney Int. 2001;60(4):1343–1353. doi: 10.1046/j.1523-1755.2001.00939.x
  • Ma Q, Battelli L, Hubbs AF. Multior- gan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeo- stasis of reactive oxygen species in mice lacking the antioxidant-activated transcrip- tion factor Nrf2. Am J Pathol. 2006;168(6):1960–1974.
  • Yates MS, Tauchi M, Katsuoka F, et al. Pharmacodynamic characterization of chemopreventive triterpenoids as excep- tionally potent inducers of Nrf2-regulated genes. Mol Cancer Ther. 2007;6(1):154–162. doi: 10.1158/1535-7163.MCT-06-0516
  • Sporn MB, Liby KT, Yore MM, et al. New synthetic triterpenoids: potent agents for preven- tion and treatment of tissue injury caused by inflammatory and oxidative stress. J Nat Prod. 2011;74(3):537–545.
  • Toto. Bardoxolone – the Phoenix? J Am Soc Nephrol. 2018;29(2):360–361.
  • Pergola PE, Raskin P, Toto RD, et al. BEAM study investigators: bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011;365(4):327–336. doi: 10.1056/NEJMoa1105351.
  • de Zeeuw D, Akizawa T, Audhya P, et al. BEACON trial investigators: bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369(26):2492–2503.
  • Avula, Avula UMR, Harris L, et al. Bardoxolone for CKD: the paradox of confusion and dogma. Kidney360. 2022;3(11):1955–1960. doi: 10.34067/KID.0000992022
  • Nangaku M, Kanda H, Takama H, et al. Randomized clinical trial on the effect of bardoxo- lone methyl on GFR in diabetic kidney disease patients (TSU- BAKI study). Kidney Int Rep. 2020;5(6):879–890.
  • Baliou S, Adamaki M, Ioannou P, et al. Ameliorative effect of taurine against diabetes and renal‐associated disorders (Review). Med Int. 2021;1(3). doi: 10.3892/mi.2021.3
  • Cusworth DC, Dent CE. Renal clearances of amino acids in normal adults and in patients with aminoaciduria. Biochem J. 1960;74(3):550‐561.
  • Mozaffari MS, Schaffer D. Taurine modulates arginine vasopressin‐mediated regulation of renal function. J Cardiovasc Pharmacol. 2001;37(6):742‐750.
  • Stanton RC. Oxidative stress and diabetic kidney disease. Curr Diab Rep. 2011;11(4):330‐336.
  • Koya D, Hayashi K, Kitada M, et al. Effects of antioxidants in diabetes‐induced oxidative stress in the glomeruli of diabetic rats. J Am Soc Nephrol. 2003;14(Suppl 3):S250‐S253.
  • Huang JS, Chuang LY, Guh JY, et al. Effects of nitric oxide and antioxidants on advanced glycation end products‐induced hypertrophic growth in human renal tubular cells. Toxicol Sci. 2009;111(1):109‐119.
  • Huang JS, Chuang LY, Guh JY, et al. Antioxidants attenuate high glucose‐induced hypertrophic growth in renal tubular epithelial cells. Am J Physiol Renal Physiol. 2007;293(4):F1072‐F1082.
  • Perfumo F, Canepa A, Divino Filho JC, et al. Muscle and plasma amino acids and nutritional status in kidney-transplanted children. Nephrol Dial Transplant. 1994;9(12):1778‐1785.
  • Hagar HH, El Etter E, Arafa M. Taurine attenuates hyper‐ tension and renal dysfunction induced by cyclosporine A in rats. Clin Exp Pharmacol Physiol. 2006;33(3):189‐196.
  • Vogel S, Wottawa M, Farhat K, et al. Prolyl hydroxylase domain (PHD) 2 affects cell migration and F-actin formation via RhoA/rho-associated kinase-dependent cofilin phosphorylation. J Biol Chem. 2010;285(44):33756–33763. doi: 10.1074/jbc.M110.132985
  • Lee DC, Sohn HA, Park ZY, et al. A lactate-induced response to hypoxia. Cell. 2015;161(3):595–609. doi: 10.1016/j.cell.2015.03.011
  • Gupta, Wish, Gupta N, et al. Hypoxia-inducible factor prolyl hydroxylase inhibitors: a potential new treatment for anemia in patients with CKD. Am J Kidney Dis. 2017;69(6):815–826.
  • Semenza GL, Wang GL. A nuclear factor induced by hyp- oxia via de novo protein synthesis binds to the human erythro- poietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12(12):5447–5454.
  • Wang GL, Jiang BH, Rue EA, et al. Hypoxia- inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510–5514.
  • Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–472. doi: 10.1126/science.1059796
  • Ivan M, Kondo K, Yang H, et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–468. doi: 10.1126/science.1059817
  • Takubo K, Goda N, Yamada W, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7(3):391–402. doi: 10.1016/j.stem.2010.06.020
  • Forristal CE, Winkler IG, Nowlan B, et al. Pharmacologic stabilization of HIF-1alpha increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood. 2013;121(5):759–769.
  • Holdstock L, Cizman B, Meadowcroft AM, et al. Daprodustat for anemia: a 24- week, open-label, randomized controlled trial in participants with chronic kidney disease. Clin Kidney J. 2019;12(1):129–138. doi: 10.1093/ckj/sfy013
  • Ajay and all. Daprodustat for the treatment of anemia in patients not undergoing dialysis. N Engl J Med. 2021;385:25.
  • Chertow, Chertow GM, Pergola PE, et al. Vadadustat in patients with anemia and non-dialysis dependent CKD. N Engl J Med. 2021;384(17):17. doi: 10.1056/NEJMoa2035938
  • Pergola PE, Spinowitz BS, Hartman CS, et al. Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease. Kidney Int. 2016;90(5):1115–1122.
  • Flamme I, Oehme F, Ellinghaus P, et al. Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85-3934 (molidustat) stimulates erythropoietin production without hypertensive effects. PLoS One. 2014;9(11):e111838.
  • Macdougall IC, Akizawa T, Berns JS, et al. Effects of Molidustat in the treatment of anemia in CKD. Clin J Am Soc Nephrol. 2019;14(1):28–39. doi: 10.2215/CJN.02510218
  • Chen, Chen N, Hao C, et al. Roxadustat for anemia in patients with kidney disease not receiving dialysis. N Engl J Med. 2019;381(11):11. doi: 10.1056/NEJMoa1813599
  • Barratt J, Andric B, Tataradze A, et al. Roxadustat for the treatment of anaemia in chronic kidney disease patients not on dialysis: a Phase 3, randomized, open-label, active-controlled study (DOLOMITES). Nephrol Dial Transplant. 2021;36(9):1616–1628. doi: 10.1093/ndt/gfab191
  • Femke FC, van Balkom BW, Papazova DA, et al. Paracrine proangiogenic function of human bone marrow-dericed mesenchymal stem cells is not affected by chronic kidney disease. Stem Cells Int. 2019;2019:1232810. doi: 10.1155/2019/1232810
  • Jourde-Chiche N, Fakhouri F, Dou L, et al. Endothelium structure and function in kidney health and disease. Nat Rev Nephrol. 2019;15(2):87–108. doi: 10.1038/s41581-018-0098-z
  • Stinghen AEM, Pecoits-Filho R. Vascular damage in kidney disease: beyond hypertension. Int J Hypertens. 2011;2011:5. Article ID 232683. doi: 10.4061/2011/232683
  • Yan M-T, Chao C-T, Lin S-H, et al. Chronic kidney disease: strategies to retard progression. J Mol Sci. 2021;22(18):10084. doi: 10.3390/ijms221810084
  • Djudjaj S, Boor P. Cellular and molecular mechanisms of kidney fibrosis. Mol Asp Med. 2019;65:16–36.
  • Perico N, Casiraghi F, Remuzzi G. Clinical translation of mesenchymal stromal cell therapies in nephrology. J Am Soc Nephrol. 2018;29(2):362–375.
  • Papazova DA, Oosterhuis NR, Gremmels H, et al. Cell-based therapies for experimental chronic kidney disease: a systematic review and meta-analysis. Dis Model Mech. 2015;8(3):281–293.
  • vanGelder MK, Mihaila SM, Jansenetal J. Fromportable dialysis to a bioengineered kidney. Expert Rev Med Devices. 2018;15(5):323–336.
  • Legallais C, Kim D, Mihaila SM, et al. Bioengineering organs for blood detoxification. Advanced Healthcare Mate- rials. 2018;7(21).
  • Pino CJ, Westover AJ, Johnston KA, et al. Regenerative medicine and immunomod- ulatory therapy: insights from the kidney, heart, brain, and lung. Kidney Int Rep. 2018;3(4):771–783.
  • Stavas, Stavas J, Filler G, et al. Renal autologous cell therapy to stabilize function in diabetes-relates chronic kidney disease: corroboration of mechanistic action with cell marker analysis. Kidney Int Rep. 2022;7(7):1619–1629. doi: 10.1016/j.ekir.2022.04.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.