87
Views
0
CrossRef citations to date
0
Altmetric
Review

Novel preclinical developments of the primary sclerosing cholangitis treatment landscape

& ORCID Icon
Pages 335-345 | Received 10 Jul 2023, Accepted 11 Mar 2024, Published online: 18 Mar 2024

References

  • Lindor KD, Kowdley KV, Harrison ME. American College of G. ACG clinical guideline: primary sclerosing cholangitis. Am J Gastroenterol. 2015 May;110(5):646–659. doi: 10.1038/ajg.2015.112. quiz 660
  • Manganis CD, Chapman RW, Culver EL. Review of primary sclerosing cholangitis with increased IgG4 levels. World J Gastroenterol. 2020 Jun 21;26(23):3126–3144. doi: 10.3748/wjg.v26.i23.3126
  • Bjornsson E, Boberg KM, Cullen S, et al. Patients with small duct primary sclerosing cholangitis have a favourable long term prognosis. Gut. 2002 Nov;51(5):731–735.
  • Choudhary NS, Saigal S, Thummala S, et al. Good long-term outcomes in patients with primary sclerosing cholangitis undergoing living donor liver transplantation. J Clin Exp Hepatol. 2020 Sep;10(5):442–447.
  • Boonstra K, Weersma RK, van Erpecum KJ, et al. Population-based epidemiology, malignancy risk, and outcome of primary sclerosing cholangitis. Hepatology. 2013 Dec;58(6):2045–2055.
  • Bowlus CL, Arrive L, Bergquist A, et al. AASLD practice guidance on primary sclerosing cholangitis and cholangiocarcinoma. Hepatology. 2023 Feb 1;77(2):659–702. doi: 10.1002/hep.32771
  • Fickert P, Pollheimer MJ, Beuers U, et al. Characterization of animal models for primary sclerosing cholangitis (PSC). J Hepatol. 2014 Jun;60(6):1290–1303.
  • Mariotti V, Cadamuro M, Spirli C, et al. Animal models of cholestasis: an update on inflammatory cholangiopathies. Biochim Biophys Acta Mol Basis Dis. 2019 May 1;1865(5):954–964. doi: 10.1016/j.bbadis.2018.07.025
  • Sato K, Glaser S, Kennedy L, et al. Preclinical insights into cholangiopathies: disease modeling and emerging therapeutic targets. Expert Opin Ther Targets. 2019 Jun;23(6):461–472. doi: 10.1080/14728222.2019.1608950
  • Ponsioen CY, Lindor KD, Mehta R, et al. Design and endpoints for clinical trials in primary sclerosing cholangitis. Hepatology. 2018 Sep;68(3):1174–1188.
  • de Vries EM, Wang J, Leeflang MM, et al. Alkaline phosphatase at diagnosis of primary sclerosing cholangitis and 1 year later: evaluation of prognostic value. Liver Int. 2016 Dec;36(12):1867–1875.
  • Stanich PP, Bjornsson E, Gossard AA, et al. Alkaline phosphatase normalization is associated with better prognosis in primary sclerosing cholangitis. Dig Liver Dis. 2011 Apr;43(4):309–313. doi: 10.1016/j.dld.2010.12.008
  • Eaton JE, Dzyubak B, Venkatesh SK, et al. Performance of magnetic resonance elastography in primary sclerosing cholangitis. J Gastroenterol Hepatol. 2016 Jun;31(6):1184–1190.
  • Al Mamari S, Djordjevic J, Halliday JS, et al. Improvement of serum alkaline phosphatase to <1.5 upper limit of normal predicts better outcome and reduced risk of cholangiocarcinoma in primary sclerosing cholangitis. J Hepatol. 2013 Feb;58(2):329–334. doi: 10.1016/j.jhep.2012.10.013
  • John BV, Khakoo NS, Schwartz KB, et al. Ursodeoxycholic acid response is associated with reduced mortality in primary biliary cholangitis with compensated cirrhosis. Am J Gastroenterol. 2021 Sep 1;116(9):1913–1923. doi: 10.14309/ajg.0000000000001280
  • Paumgartner G, Beuers U. Mechanisms of action and therapeutic efficacy of ursodeoxycholic acid in cholestatic liver disease. Clin Liver Dis. 2004 Feb;8(1):67–81. doi: 10.1016/S1089-3261(03)00135-1. vi
  • Meng F, Kennedy L, Hargrove L, et al. Ursodeoxycholate inhibits mast cell activation and reverses biliary injury and fibrosis in Mdr2(-/-) mice and human primary sclerosing cholangitis. Lab Invest. 2018 Nov;98(11):1465–1477.
  • Farrell DJ, Hines JE, Walls AF, et al. Intrahepatic mast cells in chronic liver diseases. Hepatology. 1995 Oct;22(4 Pt 1):1175–1181.
  • Francis H, Meininger CJ. A review of mast cells and liver disease: what have we learned? Dig Liver Dis. 2010 Aug;42(8):529–536. doi: 10.1016/j.dld.2010.02.016
  • Hodges K, Kennedy L, Meng F, et al. Mast cells, disease and gastrointestinal cancer: a comprehensive review of recent findings. Transl Gastrointest Cancer. 2012 Jul 1;1(2):138–150.
  • Beuers U, Spengler U, Kruis W, et al. Ursodeoxycholic acid for treatment of primary sclerosing cholangitis: a placebo-controlled trial. Hepatology. 1992 Sep;16(3):707–714.
  • Lindor KD. Ursodiol for primary sclerosing cholangitis. Mayo primary sclerosing cholangitis-ursodeoxycholic acid study group. N Engl J Med. 1997 Mar 6;336(10):691–695. doi: 10.1056/NEJM199703063361003
  • Mitchell SA, Bansi DS, Hunt N, et al. A preliminary trial of high-dose ursodeoxycholic acid in primary sclerosing cholangitis. Gastroenterology. 2001 Oct;121(4):900–907.
  • Stiehl A. Ursodeoxycholic acid in the treatment of primary sclerosing cholangitis. Ann Med. 1994 Oct;26(5):345–349. doi: 10.3109/07853899409148349
  • Olsson R, Boberg KM, de Muckadell OS, et al. High-dose ursodeoxycholic acid in primary sclerosing cholangitis: a 5-year multicenter, randomized, controlled study. Gastroenterology. 2005 Nov;129(5):1464–1472.
  • Lindor KD, Kowdley KV, Luketic VA, et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology. 2009 Sep;50(3):808–814.
  • Shi J, Li Z, Zeng X, et al. Ursodeoxycholic acid in primary sclerosing cholangitis: meta-analysis of randomized controlled trials. Hepatol Res. 2009 Sep;39(9):865–873.
  • Triantos CK, Koukias NM, Nikolopoulou VN, et al. Meta-analysis: ursodeoxycholic acid for primary sclerosing cholangitis. Aliment Pharmacol Ther. 2011 Oct;34(8):901–910.
  • Hochberg JT, Sohal A, Handa P, et al. Serum miRNA profiles are altered in patients with primary sclerosing cholangitis receiving high-dose ursodeoxycholic acid. JHEP Rep. 2023 Jun;5(6):100729.
  • Eaton JE, Silveira MG, Pardi DS, et al. High-dose ursodeoxycholic acid is associated with the development of colorectal neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. Am J Gastroenterol. 2011 Sep;106(9):1638–1645.
  • Fickert P, Wagner M, Marschall HU, et al. 24-norUrsodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology. 2006 Feb;130(2):465–481.
  • Halilbasic E, Fiorotto R, Fickert P, et al. Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2-/- mice. Hepatology. 2009 Jun;49(6):1972–1981.
  • Fickert P, Hirschfield GM, Denk G, et al. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J Hepatol. 2017 Sep;67(3):549–558.
  • [cited 2024 Jan 27]. Available from: https://clinicaltrials.gov/study/NCT03872921
  • Zhang Y, Jackson JP, St Claire RL 3rd, et al. Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes. Pharmacol Res Perspect. 2017 Aug;5(4). doi: 10.1002/prp2.329
  • Nevens F, Andreone P, Mazzella G, et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med. 2016 Aug 18;375(7):631–643. doi: 10.1056/NEJMoa1509840
  • Pellicciari R, Fiorucci S, Camaioni E, et al. 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem. 2002 Aug 15;45(17):3569–3572. doi: 10.1021/jm025529g
  • van Golen RF, Olthof PB, Lionarons DA, et al. FXR agonist obeticholic acid induces liver growth but exacerbates biliary injury in rats with obstructive cholestasis. Sci Rep. 2018 Nov 8;8(1):16529. doi: 10.1038/s41598-018-33070-1
  • Roda A, Aldini R, Camborata C, et al. Metabolic profile of obeticholic acid and endogenous bile acids in rats with decompensated liver cirrhosis. Clin Transl Sci. 2017 Jul;10(4):292–301.
  • Guo C, LaCerte C, Edwards JE, et al. Farnesoid X receptor agonists obeticholic acid and chenodeoxycholic acid increase bile acid efflux in sandwich-cultured human hepatocytes: functional evidence and mechanisms. J Pharmacol Exp Ther. 2018 May;365(2):413–421.
  • Fiorucci S, Antonelli E, Rizzo G, et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology. 2004 Nov;127(5):1497–1512.
  • Wang YD, Chen WD, Wang M, et al. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology. 2008 Nov;48(5):1632–1643.
  • Fickert P, Fuchsbichler A, Moustafa T, et al. Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts. Am J Pathol. 2009 Dec;175(6):2392–2405.
  • Albanis E Anti-fibrotic activity of INT-747, a novel FXR activator, in vitro and in experimental liver fibrosis and cirrhosis. Hepatology. 2005;42:1040A.
  • Anfuso B, Tiribelli C, Adorini L, et al. Obeticholic acid and INT-767 modulate collagen deposition in a NASH in vitro model. Sci Rep. 2020 Feb 3;10(1):1699. doi: 10.1038/s41598-020-58562-x. PMID: 32015483; PMCID: PMC6997404.
  • Kowdley KV, Vuppalanchi R, Levy C, et al. AESOP study investigators. A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. J Hepatol. 2020 Jul;73(1):94–101. doi: 10.1016/j.jhep.2020.02.033. Epub 2020 Mar 10. PMID: 32165251; PMCID: PMC8157171
  • LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases. 2012-. Obeticholic Acid. 2019 Dec 10. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548806/
  • Trauner M, Chung C, Sterling K, et al. PRIMIS: design of a pivotal, randomized, phase 3 study evaluating the safety and efficacy of the nonsteroidal farnesoid X receptor agonist cilofexor in noncirrhotic patients with primary sclerosing cholangitis. BMC Gastroenterol. 2023 Mar 15;23(1):75. doi: 10.1186/s12876-023-02653-2. PMID: 36922785; PMCID: PMC10015541.
  • Sanyal AJ, Lopez P, Lawitz EJ, et al. Tropifexor for nonalcoholic steatohepatitis: an adaptive, randomized, placebo-controlled phase 2a/b trial. Nat Med. 2023 Feb;29(2):392–400. doi: 10.1038/s41591-022-02200-8. Epub 2023 Feb 16. PMID: 36797481; PMCID: PMC9941046.
  • Schramm C, Wedemeyer H, Mason A, et al. Farnesoid X receptor agonist tropifexor attenuates cholestasis in a randomised trial in patients with primary biliary cholangitis. JHEP Rep. 2022 Jul 21;4(11): 100544. doi: 10.1016/j.jhepr.2022.100544. PMID: 36267872; PMCID: PMC9576902.
  • Tyagi S, Gupta P, Saini AS, et al. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011 Oct;2(4):236–240. doi: 10.4103/2231-4040.90879. PMID: 22247890; PMCID: PMC3255347
  • Li T, Chiang JY. Regulation of bile acid and cholesterol metabolism by PPARs. PPAR Res. 2009;2009:501739. doi: 10.1155/2009/501739. Epub 2009 Jul 14. PMID: 19636418; PMCID: PMC2712638.
  • Chianale J, Vollrath V, Wielandt AM, et al. Fibrates induce mdr2 gene expression and biliary phospholipid secretion in the mouse. Biochem J. 1996 Mar 15;314(Pt 3):781–786. doi: 10.1042/bj3140781. PMID: 8615769; PMCID: PMC1217124.
  • Corpechot C, Chazouillères O, Rousseau A, et al. A placebo-controlled trial of bezafibrate in primary biliary cholangitis. N Engl J Med. 2018 Jun 7;378(23):2171–2181. doi: 10.1056/NEJMoa1714519. PMID: 29874528.
  • de Vries E, Bolier R, Goet J, et al. Fibrates for itch (FITCH) in Fibrosing Cholangiopathies: a double-blind, randomized, placebo-controlled trial. Gastroenterology. 2021 Feb;160(3):734–743.e6. doi: 10.1053/j.gastro.2020.10.001. Epub 2020 Oct 5. PMID: 33031833.
  • Chazouilleres O, Beuers U, Bergquist A, et al.Electronic address: [email protected]; European Association for the study of the liver. EASL clinical practice guidelines on sclerosing cholangitis. J Hepatol. 2022 Sep;77(3):761–806. doi: 10.1016/j.jhep.2022.05.011. Epub 2022 Jun 21. Erratum in: J Hepatol. 2023 Nov;79(5):1339. PMID: 35738507.
  • Willson TM, Brown PJ, Sternbach DD, et al. The PPARs: from orphan receptors to drug discovery. J Med Chem. 2000;43(4):527–550. doi: 10.1021/jm990554g
  • Dai M, Yang J, Xie M, et al. Inhibition of JNK signalling mediates PPARα-dependent protection against intrahepatic cholestasis by fenofibrate. Br J Pharmacol. 2017 Sep;174(18):3000–3017. doi: 10.1111/bph.13928. Epub 2017 Aug 10. PMID: 28646549; PMCID: PMC5573431.
  • Cindoruk M, Kerem M, Karakan T, et al. Peroxisome proliferators-activated alpha agonist treatment ameliorates hepatic damage in rats with obstructive jaundice: an experimental study. BMC Gastroenterol. 2007;7(1):44. doi: 10.1186/1471-230X-7-44
  • Lindor KD, Bowlus CL, Boyer J, et al. Primary biliary cholangitis: 2018 practice guidance from the American Association for the study of liver diseases. Hepatology. 2019 Jan;69(1):394–419. doi: 10.1002/hep.30145. Epub 2018 Nov 6. PMID: 30070375
  • Hatami B, Mosala M, Hassani AH, et al. Fenofibrate in primary sclerosing cholangitis; a randomized, double-blind, placebo-controlled trial. Pharmacol Res Perspect. 2022 Aug;10(4):e00984. doi: 10.1002/prp2.984. PMID: 35822553; PMCID: PMC9277608.
  • Lemoinne S, Pares A, Reig A, et al. Primary sclerosing cholangitis response to the combination of fibrates with ursodeoxycholic acid: French-Spanish experience. Clin Res Hepatol Gastroenterol. 2018 Dec;42(6):521–528. doi: 10.1016/j.clinre.2018.06.009. Epub 2018 Aug 9. PMID: 30100231
  • Ghonem NS, Auclair AM, Hemme CL, et al. Fenofibrate improves liver function and reduces the toxicity of the bile acid pool in patients with primary biliary cholangitis and primary sclerosing cholangitis who are partial responders to Ursodiol. Clin Pharmacol Ther. 2020;108(6):1213–1223. doi: 10.1002/cpt.1930
  • Sohal A, Kowdley KV. Primary biliary cholangitis: promising emerging innovative therapies and their impact on GLOBE scores. Hepat Med. 15. 2023 Jun 8:63–77. doi: 10.2147/HMER.S361077. PMID: 37312929; PMCID: PMC10259525.
  • Boeckmans J, Natale A, Rombaut M, et al. Anti-NASH drug development hitches a lift on PPAR agonism. Cells. 2019 Dec 21;9(1):37. doi: 10.3390/cells9010037. PMID: 31877771; PMCID: PMC7016963.
  • [cited 2024 Jan 27]. Available from: https://www.cymabay.com/investors-media/news-events/press-releases/detail/569/cymabays-seladelpar-achieves-high-statistical-significance
  • Kowdley KV, Bowlus CL, Levy C, et al. ELATIVE study investigators’ group. Efficacy and safety of elafibranor in primary biliary cholangitis. N Engl J Med. 2023 Nov 13;390(9):795–805. doi: 10.1056/NEJMoa2306185. Epub ahead of print. PMID: 37962077.
  • [cited 2024 Mar 16]. Available from: https://www.clinicaltrials.gov/study/NCT05627362
  • Zweers SJ, Booij KA, Komuta M, et al. The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract. Hepatology. 2012 Feb;55(2):575–583. doi: 10.1002/hep.24702. Epub 2011 Dec 19. PMID: 21953282
  • Kliewer SA, Mangelsdorf DJ. Bile acids as hormones: the FXR-FGF15/19 Pathway. Dig Dis. 2015;33(3):327–331. doi: 10.1159/000371670. Epub 2015 May 27. PMID: 26045265; PMCID: PMC4465534.
  • Song KH, Li T, Owsley E, et al. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology. 2009 Jan;49(1):297–305. doi: 10.1002/hep.22627. PMID: 19085950; PMCID: PMC2614454
  • Wu AL, Coulter S, Liddle C, et al. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS One. 2011 Mar 18;6(3):e17868. doi: 10.1371/journal.pone.0017868. PMID: 21437243; PMCID: PMC3060878.
  • Chen Z, Jiang L, Liang L, et al. The role of fibroblast growth factor 19 in hepatocellular carcinoma. Am J Pathol. 2021 Jul;191(7):1180–1192. doi: 10.1016/j.ajpath.2021.04.014. Epub 2021 May 14. PMID: 34000282; PMCID: PMC8351122.
  • Harrison SA, Neff G, Guy CD, et al. Efficacy and safety of Aldafermin, an Engineered FGF19 Analog, in a randomized, double-blind, placebo-controlled trial of patients with nonalcoholic steatohepatitis. Gastroenterology. 2021 Jan;160(1):219–231.e1. doi: 10.1053/j.gastro.2020.08.004. Epub 2020 Aug 8. PMID: 32781086
  • Hirschfield GM, Chazouillères O, Drenth JP, et al. Effect of NGM282, an FGF19 analogue, in primary sclerosing cholangitis: a multicenter, randomized, double-blind, placebo-controlled phase II trial. J Hepatol. 2019 Mar;70(3):483–493. doi: 10.1016/j.jhep.2018.10.035. Epub 2018 Nov 9. PMID: 30414864
  • Yang F, He Y, Liu HX, et al. All-trans retinoic acid regulates hepatic bile acid homeostasis. Biochem Pharmacol. 2014 Oct 15;91(4):483–489. doi: 10.1016/j.bcp.2014.08.018. Epub 2014 Aug 28. PMID: 25175738; PMCID: PMC4236914.
  • Cai SY, Mennone A, Soroka CJ, et al. All-trans-retinoic acid improves cholestasis in alpha-naphthylisothiocyanate-treated rats and Mdr2-/- mice. J Pharmacol Exp Ther. 2014;349(1):94–98. doi: 10.1124/jpet.113.209353
  • Assis DN, Abdelghany O, Cai SY, et al. Combination therapy of all-trans retinoic acid with ursodeoxycholic acid in patients with primary sclerosing cholangitis: a human Pilot study. J Clin Gastroenterol. 2017;51(2):e11–e16. doi: 10.1097/MCG.0000000000000591
  • [cited 2024 Mar 16]. Available from: https://www.clinicaltrials.gov/study/NCT03359174https://www.clinicaltrials.gov/study/NCT03359174
  • Slijepcevic D, van de Graaf SF. Bile acid uptake transporters as targets for therapy. Dig Dis. 2017;35(3):251–258. doi: 10.1159/000450983. Epub 2017 Mar 1. PMID: 28249291; PMCID: PMC5516419.
  • Tiessen RG, Kennedy CA, Keller BT, et al. Safety, tolerability and pharmacodynamics of apical sodium-dependent bile acid transporter inhibition with volixibat in healthy adults and patients with type 2 diabetes mellitus: a randomised placebo-controlled trial. BMC Gastroenterol. 2018 Jan 5;18(1):3. doi: 10.1186/s12876-017-0736-0. PMID: 29304731; PMCID: PMC5756385.
  • Mayo MJ, Pockros PJ, Jones D, et al. A randomized, controlled, phase 2 study of Maralixibat in the treatment of itching associated with primary biliary cholangitis. Hepatol Commun. 2019 Feb 1;3(3):365–381. doi: 10.1002/hep4.1305. PMID: 30859149; PMCID: PMC6396374.
  • [cited 2024 Jan 27]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04663308
  • [cited 2024 Jan 27]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05642468
  • Bowlus CL, Eksteen B, Cheung AC, et al. Safety, tolerability, and efficacy of maralixibat in adults with primary sclerosing cholangitis: open-label pilot study. Hepatol Commun. 2023 May 15;7(6):e0153. doi: 10.1097/HC9.0000000000000153
  • Little R, Wine E, Kamath BM, et al. (2020). Gut microbiome in primary sclerosing cholangitis: a review. World J Gastroenterol, 26(21), 2768–2780. doi: 10.3748/wjg.v26.i21.2768
  • Shah A, Macdonald GA, Morrison M, et al. Targeting the gut microbiome as a treatment for primary sclerosing cholangitis: a conceptional framework. Am J Gastroenterol. 2020 Jun;115(6):814–822. doi: 10.14309/ajg.0000000000000604. PMID: 32250997; PMCID: PMC7269024.
  • Schrumpf E, Kummen M, Valestrand L, et al. The gut microbiota contributes to a mouse model of spontaneous bile duct inflammation. J Hepatol. 2017;66(2):382–389. doi: 10.1016/j.jhep.2016.09.020
  • Bajer L, Kverka M, Kostovcik M, et al. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J Gastroenterol. 2017;23(25):4548–4558. doi: 10.3748/wjg.v23.i25.4548
  • Nakamoto N, Sasaki N, Aoki R, et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat Microbiol. 2019;4(3):492–503. doi: 10.1038/s41564-018-0333-1
  • Damman JL, Rodriguez EA, Ali AH, et al. Review article: the evidence that vancomycin is a therapeutic option for primary sclerosing cholangitis. Aliment Pharmacol Ther. 2018 Apr;47(7):886–895. doi: 10.1111/apt.14540. Epub 2018 Feb 7. PMID: 29411404.
  • Färkkilä M, Karvonen AL, Nurmi H, et al. Metronidazole and ursodeoxycholic acid for primary sclerosing cholangitis: a randomized placebo-controlled trial. Hepatology. 2004 Dec;40(6):1379–1386. doi: 10.1002/hep.20457. PMID: 15565569.
  • Allegretti JR, Kassam Z, Carrellas M, et al. Fecal microbiota transplantation in patients with primary sclerosing cholangitis: a pilot clinical trial. Am J Gastroenterol. 2019 Jul;114(7):1071–1079. doi: 10.14309/ajg.0000000000000115. PMID: 30730351.
  • Deneau MR, Mack C, Mogul D, et al. Oral vancomycin, ursodeoxycholic acid, or No therapy for pediatric primary sclerosing cholangitis: a matched analysis. Hepatology. 2021 Mar;73(3):1061–1073. doi: 10.1002/hep.31560. PMID: 32946600; PMCID: PMC8557636.
  • Ali AH, Damman J, Shah SB, et al. Open-label prospective therapeutic clinical trials: oral vancomycin in children and adults with primary sclerosing cholangitis. Scand J Gastroenterol. 2020 Aug;55(8):941–950. doi: 10.1080/00365521.2020.1787501. Epub 2020 Jul 7. PMID: 32633158.
  • Silveira MG, Torok NJ, Gossard AA, et al. Minocycline in the treatment of patients with primary sclerosing cholangitis: results of a pilot study. Am J Gastroenterol. 2009 Jan;104(1):83–88. doi: 10.1038/ajg.2008.14. PMID: 19098854.
  • Krehmeier U, Bardenheuer M, Voggenreiter G, et al. Effects of antimicrobial agents on spontaneous and endotoxin-induced cytokine release of human peripheral blood mononuclear cells. J Infect Chemother. 2002;8(2):194–197. doi: 10.1007/s101560200036
  • Tabibian JH, Gossard A, El-Youssef M, et al. Prospective clinical trial of rifaximin therapy for patients with primary sclerosing cholangitis. Am J Ther. 2017 Jan;24(1):e56–e63. doi: 10.1097/MJT.0000000000000102. PMID: 24914504; PMCID: PMC4261045.
  • Vleggaar FP, Monkelbaan JF, van Erpecum KJ. Probiotics in primary sclerosing cholangitis: a randomized placebo-controlled crossover pilot study. Eur J Gastroenterol Hepatol. 2008;20(7):688–692. doi: 10.1097/MEG.0b013e3282f5197e
  • Philips CA, Augustine P, Phadke N. Healthy donor fecal microbiota transplantation for recurrent bacterial cholangitis in primary sclerosing cholangitis – a single case report. J Clin Transl Hepatol. 2018 Dec 28;6(4):438–441. doi: 10.14218/JCTH.2018.00033. Epub 2018 Aug 1. PMID: 30637223; PMCID: PMC6328734.
  • Pollheimer MJ, Halilbasic E, Fickert P, et al. Pathogenesis of primary sclerosing cholangitis. Best Pract Res Clin Gastroenterol. 2011 Dec;25(6):727–739. doi: 10.1016/j.bpg.2011.10.009. PMID: 22117638; PMCID: PMC3236286.
  • Aron JH, Bowlus CL. The immunobiology of primary sclerosing cholangitis. Semin Immunopathol. 2009 Sep;31(3):383–397. doi: 10.1007/s00281-009-0154-7. Epub 2009 May 26. PMID: 19468733; PMCID: PMC2758173.
  • Kim YS, Hurley EH, Park Y, et al. Treatment of primary sclerosing cholangitis combined with inflammatory bowel disease. Intest Res. 2023 Sep 1;21(4):420–432.
  • Peng X, Luo X, Hou JY, et al. Immunosuppressive agents for the treatment of primary sclerosing cholangitis: a systematic review and meta-analysis. Dig Dis. 2017;35(5):478–485. doi: 10.1159/000471874. Epub 2017 May 6. PMID: 28478443.
  • Hedin CRH, Sado G, Ndegwa N, et al. Effects of tumor necrosis factor antagonists in patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol. 2020;18(10):2295–2304.e2. doi: 10.1016/j.cgh.2020.02.014
  • Angulo P, Batts KP, Jorgensen RA, et al. Oral budesonide in the treatment of primary sclerosing cholangitis. Am J Gastroenterol. 2000;95(9):2333–2337. doi: 10.1111/j.1572-0241.2000.02323.x
  • Talwalkar JA, Angulo P, Keach JC, et al. Mycophenolate mofetil for the treatment of primary sclerosing cholangitis. Am J Gastroenterol. 2005;100(2):308–312. doi: 10.1111/j.1572-0241.2005.40484.x
  • Battat R, Dulai PS, Jairath V, et al. A product review of vedolizumab in inflammatory bowel disease. Hum Vaccin Immunother. 2019;15(10):2482–2490. doi: 10.1080/21645515.2019.1591139
  • Lynch KD, Chapman RW, Keshav S, et al. Effects of vedolizumab in patients with primary sclerosing cholangitis and inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2020;18(1):179–187.
  • Caron B, Peyrin-Biroulet L, Pariente B, et al. Vedolizumab therapy is ineffective for primary sclerosing cholangitis in patients with inflammatory bowel disease: a GETAID multicentre cohort study. J Crohns Colitis. 2019;13(10):1239–1247. doi: 10.1093/ecco-jcc/jjz088
  • [cited 2024 Jan 27]. Available from: https://clinicaltrials.gov/study/NCT03035058?cond=NCT03035058&rank=1
  • Fox RJ, Wiendl H, Wolf C, et al. A double-blind, randomized, placebo-controlled phase 2 trial evaluating the selective dihydroorotate dehydrogenase inhibitor vidofludimus calcium in relapsing-remitting multiple sclerosis. Ann Clin Transl Neurol. 2022 Jul;9(7):977–987. doi: 10.1002/acn3.51574. Epub 2022 Jun 14. PMID: 35698927; PMCID: PMC9268865.
  • Muehler A, Kohlhof H, Groeppel M, et al. The selective oral immunomodulator vidofludimus in patients with active rheumatoid arthritis: safety results from the COMPONENT study. Drugs R D. 2019 Dec;19(4):351–366. doi: 10.1007/s40268-019-00286-z. PMID: 31621054; PMCID: PMC6890621.
  • Carey EJ, Eaton J, Clayton M, et al. A pilot study of vidofludimus calcium for treatment of primary sclerosing cholangitis. Hepatol Commun. 2022 Jul;6(7):1589–1597. doi: 10.1002/hep4.1926. Epub 2022 Mar 3. PMID: 35238498; PMCID: PMC9234677.
  • Fitzpatrick LR, Deml L, Hofmann C, et al. 4SC-101, a novel immunosuppressive drug, inhibits IL-17 and attenuates colitis in two murine models of inflammatory bowel disease. Inflamm Bowel Dis. 2010;16(10):1763–1777.
  • Grant AJ, Lalor PF, Salmi M, et al. Homing of mucosal lymphocytes to the liver in the pathogenesis of hepatic complications of inflammatory bowel disease. Lancet. 2002;359(9301):150–157. doi: 10.1016/S0140-6736(02)07374-9
  • Arndtz K, Yung-Yi C, Rowe A, et al. Monoclonal antibody BTT1023 targeting vascular adhesion protein 1 for treating primary sclerosing cholangitis: BUTEO single-arm phase II trial. Efficacy Mech Eval. 2022;9(1):1–54.
  • Greenman R, Segal-Salto M, Barashi N, et al. CCL24 regulates biliary inflammation and fibrosis in primary sclerosing cholangitis. JCI Insight. 2023 Jun 22;8(12):e162270. doi: 10.1172/jci.insight.162270. PMID: 37345655; PMCID: PMC10371243.
  • [cited 2024 Jan 27]. Available from: https://clinicaltrials.gov/study/NCT04595825?cond=NCT04595825&rank=1
  • Benson AB 3rd, Wainberg ZA, Hecht JR, et al. A phase II randomized, double-blind, placebo-controlled study of simtuzumab or placebo in combination with Gemcitabine for the first-line treatment of pancreatic adenocarcinoma. Oncology. 2017;22(3):241–e15. doi: 10.1634/theoncologist.2017-0024
  • Muir AJ, Goodman Z, Bowlus CL, et al. Serum lysyl oxidase-like-2 (SLOXL2) levels correlate with disease severity in patients with primary sclerosing cholangitis. J Hepatol. 2016;64(Suppl.):S428.
  • French D, Huntzicker EG, Goodman ZD, et al. Hepatic expression of lysyl oxidase-like-2 (LOXL2) in primary sclerosing cholangitis (PSC). Hepatology 2016;64(Suppl. 1):194A.
  • Ikenaga N, Peng Z-W, Vaid KA, et al. Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut. 2017;66(9):1697–1708. doi: 10.1136/gutjnl-2016-312473
  • Muir AJ, Levy C, Janssen HLA, et al. (2019), Simtuzumab for primary sclerosing cholangitis: phase 2 study results with insights on the natural history of the disease. Hepatology, 69(2):684–698. doi: 10.1002/hep.30237
  • Lefebvre E, Moyle G, Reshef R, et al. Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS One. 2016;11(6):e0158156. doi: 10.1371/journal.pone.0158156
  • Mossanen JC, Krenkel O, Ergen C, et al. Chemokine (C-C motif) receptor 2–positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology. 2016;64(5):1667–1682.
  • Puengel T, Krenkel O, Kohlhepp M, et al. Differential impact of the dual CCR2/CCR5 inhibitor cenicriviroc on migration of monocyte and lymphocyte subsets in acute liver injury. PLoS One. 2017;12(9):e0184694. doi: 10.1371/journal.pone.0184694
  • Guicciardi ME, Trussoni CE, Krishnan A, et al. Macrophages contribute to the pathogenesis of sclerosing cholangitis in mice. J Hepatol. 2018;69(3):676–686. doi: 10.1016/j.jhep.2018.05.018
  • Eksteen B, Bowlus CL, Montano-Loza AJ, et al. Efficacy and Safety of Cenicriviroc in patients with primary sclerosing cholangitis: PERSEUS study. Hepatol Commun. 2021;5(3):478–490. doi: 10.1002/hep4.1619
  • Di Bisceglie AM, Watts GF, Lavin P, et al. Pharmacokinetics and pharmacodynamics of HTD1801 (berberine ursodeoxycholate, BUDCA) in patients with hyperlipidemia. Lipids Health Dis. 2020;19(1):239. doi: 10.1186/s12944-020-01406-4
  • Cheng H, Liu J, Tan Y, et al. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J Pharm Anal. 2022;12(4):541–555. doi: 10.1016/j.jpha.2021.10.003
  • Wang Y, Xiang D, Chen W, et al. Berberine attenuates cholestatic liver and bile duct injury in Mdr2−/− mice by maintaining bile acid homeostasis. FASEB J. 2020;34(S1):1–1. doi: 10.1096/fasebj.2020.34.s1.04758
  • Kowdley KV, Forman L, Eksteen B, et al. A randomized, dose-finding, proof-of-concept study of berberine ursodeoxycholate in patients with primary sclerosing cholangitis. Am J Gastroenterol. 2022 Nov 1;117(11):1805–1815. doi: 10.14309/ajg.0000000000001956. Epub 2022 Aug 22. PMID: 36327436.
  • Rahman SR, Roper JA, Grove JI, et al. Integrins as a drug target in liver fibrosis. Liver Int. 2022 Mar;42(3):507–521. doi: 10.1111/liv.15157. Epub 2022 Jan 28. PMID: 35048542.
  • Yu D, Cai SY, Mennone A, et al. Cenicriviroc, a cytokine receptor antagonist, potentiates all-trans retinoic acid in reducing liver injury in cholestatic rodents. Liver Int. 2018;38(6):1128–1138. doi: 10.1111/liv.13698
  • Turner S, Decaris M, Ho S, et al. PLN-74809, a dual αVβ6/αVβ1 integrin inhibitor, inhibits fibrosis in precision-cut liver tissue from PSC and PBC patients and the Mdr2 knockout mouse. AASLD Liver Meeting. 2019;70(1SUPPL): 794A.
  • [cited 2024 Mar 16]. Available from: https://www.clinicaltrials.gov/study/NCT04480840
  • [cited 2024 Jan 27]. Available from: https://ir.pliantrx.com/news-releases/news-release-details/pliant-therapeutics-announces-positive-safety-and-exploratory
  • Vargas JI, Arrese M, Shah VH, et al. Use of statins in patients with chronic liver disease and cirrhosis: Current views and prospects. Curr Gastroenterol Rep. 2017 Sep;19(9):43. doi: 10.1007/s11894-017-0584-7. PMID: 28752475; PMCID: PMC5822686.
  • Kim RG, Loomba R, Prokop LJ, et al. Statin use and risk of cirrhosis and related complications in patients with chronic liver diseases: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2017 Oct;15(10):1521–1530.e8. doi: 10.1016/j.cgh.2017.04.039. Epub 2017 May 4. PMID: 28479502; PMCID: PMC5605397.
  • Zafra C, Abraldes JG, Turnes J, et al. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology. 2004;126(3):749–755. doi: 10.1053/j.gastro.2003.12.007
  • Abraldes JG, Rodriguez-Vilarrupla A, Graupera M, et al. Simvastatin treatment improves liver sinusoidal endothelial dysfunction in CCl4 cirrhotic rats. J Hepatol. 2007;46(6):1040–1046. doi: 10.1016/j.jhep.2007.01.020
  • Trebicka J, Hennenberg M, Odenthal M, et al. Atorvastatin attenuates hepatic fibrosis in rats after bile duct ligation via decreased turnover of hepatic stellate cells. J Hepatol. 2010;53(4):702–712. doi: 10.1016/j.jhep.2010.04.025
  • Stokkeland K, Höijer J, Bottai M, et al. Statin use is associated with improved outcomes of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol. 2019 Aug;17(9):1860–1866.e1. doi: 10.1016/j.cgh.2018.11.002. Epub 2018 Nov 15. PMID: 30448601.
  • [cited 2024 Jan 27]. Available from: https://clinicaltrials.gov/study/NCT04133792?cond=NCT04133792&rank=1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.