104
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Alignment of highly resolved time-dependent experimental and simulated crash test data

ORCID Icon, ORCID Icon &
Pages 1-15 | Received 25 Mar 2022, Accepted 24 Sep 2022, Published online: 19 Oct 2022

References

  • Spethmann P, Herstatt C, Thomke SH. Crash simulation evolution and its impact on R&D in the automotive applications. IJPD. 2009;8(3):291–305. In
  • Erickson MS, Bauer JJ, Hayes WC. The accuracy of photo-based three-dimensional scanning for collision reconstruction using 123D catch. In SAE Technical Paper, SAE International, 2013.
  • Gall J, Rosenhahn B, Gehrig S, et al. Model-based motion capture for crash test video analysis. In Pattern recognition. Berlin (Heidelberg): Springer, 2008. pp. 92–101.
  • McClenathan RV, Nakhla SS, McCoy RW, et al. Use of photogrammetry in extracting 3D structural deformation/dummy occupant movement time history during vehicle crashes. In SAE Trans. 2005;114:736–742. https://www.jstor.org/stable/44725108
  • Heist S, Lutzke P, Schmidt I, et al. High-speed three-dimensional shape measurement using GOBO projection. Optic Laser Eng. 2016;87:90–96.
  • Iza-Teran R, Garcke J. A geometrical method for Low-Dimensional representations of simulations. SIAM/ASA J. Uncertain Quan. 2019;7(2):472–496. In
  • Demirci E, Yildiz AR. An experimental and numerical investigation of the effects of geometry and spot welds on the crashworthiness of vehicle thin-walled structures. Materialpruefung/Mater Test. 2018;60(6):553–561.
  • Mert SK, Demiral M, Altin M, et al. Experimental and numerical investigation on the crashworthiness optimization of thin-walled aluminium tubes considering damage criteria. J Braz. Soc. Mech. Sci. Eng. 2021;43(2):1–22. In
  • Besl PJ, McKay ND. Method for registration of 3-D shapes. In Sensor Fusion IV: Control Paradigms and Data Structures. SPIE, 1992. pp. 586–606.
  • Chen Y, Medioni G. Object modelling by registration of multiple range images. Image Vision Comput. 1992;10(3):145–155. In
  • Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm. In: Proceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM, 2001. pp. 145–152.
  • Tam GKL, Cheng Z-Q, Lai Y-K, et al. Registration of 3D point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans Vis Comput Graph. 2013;19(7):1199–1217. In
  • Thanou D, Chou PA, Frossard P. Graph-based compression of dynamic 3D point cloud sequences. IEEE Trans Image Process. 2016;25(4):1765–1778. In
  • Liu J, Akhtar N, Mian A. Deep reconstruction of 3D human poses from video, inIEEE Transactions on Artificial Intelligence, 2022. https://doi.org/10.1109/TAI.2022.3164065.
  • Dvořák J, Vanecek P, Vása L. Towards understanding time varying triangle meshes In International Conference on Computational Science (ICCS) 2021. Springer, 2021. p. 45–58.
  • Dvořák J, Káčereková Z, Vaněček P, et al. As-rigid-as-possible volume tracking for time-varying surfaces. Comput Graph. 2022;102:329–338.
  • Bojsen-Hansen M, Li H, Wojtan C. Tracking surfaces with evolving topology. ACM Trans. Graph. 2012;31(4):1–10. In
  • Ovsjanikov M, Ben-Chen M, Solomon J, et al. Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 2012;31(4):1–11. In
  • Tang J, Xu D, Jia K, et al. Learning parallel dense correspondence from Spatio-Temporal descriptors for efficient and robust 4D reconstruction. In Proceedings of CVPR. 2021. pp. 6018–6027.
  • Lee JA, Verleysen M. Nonlinear dimensionality reduction. Information science and statistics. New York (NY): Springer New York, 2007.
  • Bohn B, Garcke J, Iza-Teran R, et al. Analysis of car crash simulation data with nonlinear machine learning methods. Procedia Computer Science. 2013;18:621–630.
  • Iza-Teran R. Enabling the analysis of finite element simulation bundles. Int J Uncertain Quan. 2014;4(2):95–110. In:
  • Kracker D, Garcke J, Schuhmacher A. Automatic analysis of crash simulations with dimensionality reduction algorithms such as PCA and t-SNE. In: 16th International LS-DYNA Users Conference, 2020.
  • Mertler S. Comparative analysis of crash simulation results using generative nonlinear dimensionality reduction [dissertation]. Universität Wuppertal, 2022.
  • Schwartz A-L. Analysis of crash simulation data using spectral embedding with histogram distances. In: Informatik 2014, E Plödereder, L Grunske, E Schneider, and D Ull, edtors. Bonn: Gesellschaft für Informatik e.V., 2014. pp. 2449–2460.
  • Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press, 2016.
  • Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–507. In
  • Hahner S, Garcke J. Mesh convolutional autoencoder for Semi-Regular meshes of different sizes In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 2022. p. 885–894.
  • Diez C, Harzheim L, Schumacher A. Effiziente Wissensgenerierung zur Robustheitsuntersuchung von Fahrzeugstrukturen mittels Modellreduktion und Ähnlichkeitsanalyse -- Big Data in der Crashsimulation. VDI-Berichte. 2016;2279:137–150.
  • Diez C, Kunze P, Toewe D, et al. Big-Data based rule-finding for analysis of crash simulations. In: World Congress on Structural and Multidisciplinary Optimization. June. 2017.
  • Meywerk M. CAE-Methoden in der Fahrzeugtechnik. Berlin (Heidelberg): Springer Berlin Heidelberg, 2007.
  • Kuczyński J, Woźniakowski H. Estimating the largest eigenvalue by the power and lanczos algorithms with a random start. SIAM J. Matrix Anal. & Appl. 1992;13(4):1094–1122.
  • Campbell JB, Wynne RH. Introduction to remote sensing. New York: Guilford Press, 2011.
  • National Crash Analysis Center (NCAC). Finite element model archive. [cited 2016, October 1]. http://web.archive.org/web/20160110143219/www.ncac.gwu.edu/vml/models.html.
  • Hahner S, Iza-Teran R, Garcke J. Analysis and prediction of deforming 3D shapes using oriented bounding boxes and LSTM autoencoders. In: Artificial neural networks and machine learning - ICANN 2020. Springer, Berlin, Heidelberg, 2020. pp. 284–296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.