137
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A comparative study on dynamic compression response of multi-cell thin-walled structures with filling foams and connecting ribs

, , , &
Pages 210-223 | Received 27 Sep 2022, Accepted 23 Jun 2023, Published online: 05 Jul 2023

References

  • Li Y, Fan Z, Hu S, et al. Dynamic enhancement mechanism of energy absorption of multi-cell thin-walled tube. Thin Wall Struct. 2022;178:109449. doi: 10.1016/j.tws.2022.109449.
  • Guillow SR, Lu G, Grzebieta RH. Quasi-static axial compression of thin-walled circular aluminium tubes. Int J Mech Sci. 2001;43(9):2103–2123. doi: 10.1016/S0020-7403(01)00031-5.
  • Sun G, Liu T, Huang X, et al. Topological configuration analysis and design for foam filled multi-cell tubes. Eng Struct. 2018;155:235–250. doi: 10.1016/j.engstruct.2017.10.063.
  • Zhang Y, Xu X, Wang J, et al. Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load. Int J Mech Sci. 2018;140:407–431. doi: 10.1016/j.ijmecsci.2018.03.015.
  • Thinvongpituk C, Onsalung N. Crush response of polyurethane foam-filled aluminium tube subjected to axial loading. AMR. 2014;875-877:534–541. doi: 10.4028/www.scientific.net/AMR.875-877.534.
  • Aktay L, Toksoy AK, Güden M. Quasi-static axial crushing of extruded polystyrene foam-filled thin-walled aluminum tubes: experimental and numerical analysis. Mater Design. 2006;27(7):556–565. doi: 10.1016/j.matdes.2004.12.019.
  • Yang H, Lei H, Lu G. Crashworthiness of circular fiber reinforced plastic tubes filled with composite skeletons/aluminum foam under drop-weight impact loading. Thin Wall Struct. 2021;160:107380. doi: 10.1016/j.tws.2020.107380.
  • Rogala M, Ferdynus M, Gawdzińska K, et al. The influence of different length aluminum foam filling on mechanical behavior of a square thin-walled column. Materials. 2021;14(13):3630. doi: 10.3390/ma14133630.
  • Onsalung N, Thinvongpituk C, Pianthong K. Impact response of circular aluminum tube filled with polyurethane foam. Mater Trans. 2014;55(1):207–215. doi: 10.2320/matertrans.M2013293.
  • Li J, Chen Y, Feng X, et al. Computational modeling and energy absorption behavior of thin-walled tubes with the Kresling origami pattern. J Int Assoc Shell Sp. 2021;62(2):71–81. doi: 10.20898/j.iass.2021.008.
  • Fan H, Luo Y, Yang F, et al. Approaching perfect energy absorption through structural hierarchy. Int J Mech Sci. 2018;130:12–32. doi: 10.1016/j.ijengsci.2018.05.005.
  • Wu S, Zheng G, Sun G, et al. On design of multi-cell thin-wall structures for crashworthiness. Int J Impact Eng. 2016;88:102–117. doi: 10.1016/j.ijimpeng.2015.09.003.
  • San Ha N, Pham TM, Chen W, et al. Crashworthiness analysis of bio-inspired fractal tree-like multi-cell circular tubes under axial crushing. Thin Wall Struct. 2021;169:108315. doi: 10.1016/j.tws.2021.108315.
  • Santosa S, Wierzbicki T. Crash behavior of box columns filled with aluminum honeycomb or foam. Comput Struct. 1998;68(4):343–367. doi: 10.1016/S0045-7949(98)00067-4.
  • Abramowicz W, Jones N. Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically. Int J Impact Eng. 1997;19(5-6):415–437. doi: 10.1016/S0734-743X(96)00052-8.
  • Hsu SS, Jones N. Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminium alloy tubes. Int J Crashworthines. 2004;9(2):195–217. doi: 10.1533/ijcr.2004.0282.
  • Al Galib D, Limam A. Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes. Thin Wall Struct. 2004;42(8):1103–1137. doi: 10.1016/j.tws.2004.03.001.
  • Sun G, Li S, Li G, et al. On crashing behaviors of aluminium/CFRP tubes subjected to axial and oblique loading: an experimental study. Compos Part B Eng. 2018;145:47–56. doi: 10.1016/j.compositesb.2018.02.001.
  • Fang J, Gao Y, Sun G, et al. Dynamic crashing behavior of new extrudable multi-cell tubes with a functionally graded thickness. Int J Mech Sci. 2015;103:63–73. doi: 10.1016/j.ijmecsci.2015.08.029.
  • An X, Fan H. Hybrid design and energy absorption of luffa-sponge-like hierarchical cellular structures. Mater Design. 2016;106:247–257. doi: 10.1016/j.matdes.2016.05.110.
  • Zhou J, Guan Z, Cantwell WJ. The energy-absorbing behaviour of composite tube-reinforced foams. Compos Part B Eng. 2018;139:227–237. doi: 10.1016/j.compositesb.2017.11.066.
  • Alia RA, Cantwell WJ, Langdon GS, et al. The energy-absorbing characteristics of composite tube-reinforced foam structures. Compos Part B Eng. 2014;61:127–135. doi: 10.1016/j.compositesb.2014.01.018.
  • Padmaja M, Murty V, Rao NVR. Quasi static axial compression of empty and PU foam filled circular aluminium and light gauge square steel tubes. Mater Today. 2021;43:2342–2347. doi: 10.1016/j.matpr.2021.01.680.
  • Chen Y, Clausen AH, Hopperstad OS, et al. Stress–strain behaviour of aluminium alloys at a wide range of strain rates. Int J Solids Struct. 2009;46(21):3825–3835. doi: 10.1016/j.ijsolstr.2009.07.013.
  • Pinto SC, Marques PAAP, Vicente R, et al. Hybrid structures made of polyurethane/graphene nanocomposite foams embedded within aluminum open-cell foam. Metals. 2020;10(6):768. doi: 10.3390/met10060768.
  • Liu YD, Yu JL, Zheng ZJ, et al. A numerical study on the rate sensitivity of cellular metals. Int J Solids Struct. 2009;46(22-23):3988–3998. doi: 10.1016/j.ijsolstr.2009.07.024.
  • Qiu N, Gao Y, Fang J, et al. Theoretical prediction and optimization of multi-cell hexagonal tubes under axial crashing. Thin Wall Struct. 2016;102:111–121. doi: 10.1016/j.tws.2016.01.023.
  • Zheng G, Wu S, Sun G, et al. Crushing analysis of foam-filled single and bitubal polygonal thin-walled tubes. Int J Mech Sci. 2014;87:226–240. doi: 10.1016/j.ijmecsci.2014.06.002.
  • Yao S, Yang Z, Li Z. Crashworthiness study of double-layer sinusoidal tubes under axial loading. Int J Crashworthines. 2022;27:1270–1286.
  • Yang K, Xu S, Shen J, et al. Energy absorption of thin-walled tubes with pre-folded origami patterns: numerical simulation and experimental verification. Thin Wall Struct. 2016;103:33–44. doi: 10.1016/j.tws.2016.02.007.
  • Zhang X, Cheng G, Zhang H. Theoretical prediction and numerical simulation of multi-cell square thin-walled structures. Thin Wall Struct. 2006;44(11):1185–1191. doi: 10.1016/j.tws.2006.09.002.
  • Tran TN, Hou S, Han X, et al. Theoretical prediction and crashworthiness optimization of multi-cell square tubes under oblique impact loading. Int J Mech Sci. 2014;89:177–193. doi: 10.1016/j.ijmecsci.2014.08.027.
  • Sun Y, Li Q. Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modelling. Int J Impact Eng. 2018;112:74–115. doi: 10.1016/j.ijimpeng.2017.10.006.
  • Zhang Y, Yan X, Huang W, et al. Experimental investigations on mechanical behavior of the carbon fiber tube reinforced polyurethane foam. Thin Wall Struct. 2020;155:106899. doi: 10.1016/j.tws.2020.106899.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.