109
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of crashworthiness of CFRP thin-walled beams filled with aluminium honeycomb based on surrogate model

ORCID Icon, , ORCID Icon, , &
Pages 237-246 | Received 19 Sep 2022, Accepted 23 Jun 2023, Published online: 21 Jul 2023

References

  • Costas M, Díaz J, Romera L, et al. A multi-objective surrogate-based optimization of the crashworthiness of a hybrid impact absorber. Int J Mech Sci. 2014;88:46–54. doi:10.1016/j.ijmecsci.2014.07.002.
  • Yin HF, Wen GL, Hou SJ, et al. Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes. Mater Des. 2011;32(8-9):4449–4460. doi:10.1016/j.matdes.2011.03.060.
  • Sun GY, Xu FX, Li GY, et al. Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness. Int J Impact Eng. 2014;64:62–74. doi:10.1016/j.ijimpeng.2013.10.004.
  • Tran T, Hou S, Han X, et al. Theoretical prediction and crashworthiness optimization of multi-cell triangular tubes. Thin Walled Struct. 2014;82(82):183–195. doi:10.1016/j.tws.2014.03.019.
  • Asanjarani A, Dibajian SH, Mahdian A. Multi-objective crashworthiness optimization of tapered thin-walled square tubes with indentations. Thin Walled Struct. 2017;116:26–36. doi:10.1016/j.tws.2017.03.015.
  • Wang CY, Li Y, Zhao WZ, et al. Structure design and multi-objective optimization of a novel crash box based on biomimetic structure. Int J Mech Sci. 2018;138-139:489–501. doi:10.1016/j.ijmecsci.2018.01.032.
  • Pirmohammad S, Marzdashti SE. Crashworthiness optimization of combined straight-tapered tubes using genetic algorithm and neural networks. Thin Walled Struct. 2018;127:318–332. doi:10.1016/j.tws.2018.01.022.
  • Lu RH, Gao WZ, Hu XL, et al. Crushing analysis and crashworthiness optimization of tailor rolled tubes with variation of thickness and material properties. Int J Mech Sci. 2018;136:67–84. doi:10.1016/j.ijmecsci.2017.12.020.
  • Ying L, Dai MH, Zhang SZ, et al. Multiobjective crashworthiness optimization of thin-walled structures with functionally graded strength under oblique impact loading. Thin Walled Struct. 2017;117:165–177. doi:10.1016/j.tws.2017.04.007.
  • Baroutaji A, Gilchrist MD, Smyth D, et al. Crush analysis and multi-objective optimization design for circular tube under quasi-static lateral loading. Thin Walled Struct. 2015;86:121–131. doi:10.1016/j.tws.2014.08.018.
  • Yin HF, Xiao YY, Wen GL, et al. Multi-objective robust optimization of foam-filled bionic thin-walled structures. Thin Walled Struct. 2016;109:332–343. doi:10.1016/j.tws.2016.10.011.
  • Liu WY, Lin ZQ, He JY, et al. Crushing behavior and multi-objective optimization on the crashworthiness of sandwich structure with star-shaped tube in the center. Thin Walled Struct. 2016;108:205–214. doi:10.1016/j.tws.2016.08.021.
  • Marzbanrad J, Ebrahimi MR. Multi-Objective optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks. Thin Walled Struct. 2011;49(12):1605–1615. doi:10.1016/j.tws.2011.08.009.
  • Djamaluddin F, Abdullah S, Ariffin AK, et al. Optimization of foam-filled double circular tubes under axial and oblique impact loading conditions. Thin Walled Struct. 2015;87:1–11. doi:10.1016/j.tws.2014.10.015.
  • An XZ, Gao YK, Fang JG, et al. Crashworthiness design for foam-filled thin-walled structures with functionally lateral graded thickness sheets. Thin Walled Struct. 2015;91:63–71. doi:10.1016/j.tws.2015.01.011.
  • Paz J, Díaz J, Romera L, et al. Size and shape optimization of aluminum tubes with GFRP honeycomb reinforcements for crashworthy aircraft structures. Compos Struct. 2015;133:499–507. doi:10.1016/j.compstruct.2015.07.077.
  • Qi C, Yang S, Dong FL. Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading. Thin Walled Struct. 2012;59:103–119. doi:10.1016/j.tws.2012.05.008.
  • Zhang Y, Sun GY, Li GY, et al. Optimization of foam-filled bitubal structures for crashworthiness criteria. Mater Des. 2012;38:99–109. doi:10.1016/j.matdes.2012.01.028.
  • Liu Y. Crashworthiness design of multi-corner thin-walled columns. Thin Walled Struct. 2008;46(12):1329–1337. doi:10.1016/j.tws.2008.04.003.
  • Acar E, Guler MA, Gerçeker B, et al. Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations. Thin Walled Struct. 2011;49(1):94–105. doi:10.1016/j.tws.2010.08.010.
  • Sun G, Li G, Hou S, et al. Crashworthiness design for functionally graded foam-filled thin-walled structures. Mater Sci EngA. 2010;527(7-8):1911–1919. doi:10.1016/j.msea.2009.11.022.
  • Bi J, Fang H, Wang Q, et al. Modeling and optimization of foam-filled thin-walled columns for crashworthiness designs. Finite Elements Analy Design. 2010;46(9):698–709. doi:10.1016/j.finel.2010.03.008.
  • Zarei HR, Kröger M. Multiobjective crashworthiness optimization of circular aluminum tubes. Thin Walled Struct. 2006;44(3):301–308. doi:10.1016/j.tws.2006.03.010.
  • Zarei H, Kröger M. Optimum honeycomb filled crash absorber design. Mater Design. 2008;29(1):193–204. doi:10.1016/j.matdes.2006.10.013.
  • Zarei HR, Kröger M. Optimization of the foam-filled aluminum tubes for crush box application. Steel Construction. 2008;46(2):214–221. doi:10.1016/j.tws.2007.07.016.
  • Yin HF, Wen GL, Liu ZB, et al. Crashworthiness optimization design for foam-filled multi-cell thin-walled structures. Thin Walled Struct. 2014;75(75):8–17. doi:10.1016/j.tws.2013.10.022.
  • Paz J, Díaz J, Romera L, et al. Crushing analysis and multi-objective crashworthiness optimization of GFRP honeycomb-filled energy absorption devices. Finite Elements Analys Design. 2014;91(91):30–39. doi:10.1016/j.finel.2014.07.006.
  • Kalhor R, Akbarshahi H, Case SW. Numerical modeling of the effects of FRP thickness and stacking sequence on energy absorption of metal–FRP square tubes. Compos Struct. 2016;147:231–246. doi:10.1016/j.compstruct.2016.03.038.
  • Du Z, Duan L, Cheng A, et al. Theoretical prediction and crashworthiness optimization of thin-walled structures with single-box multi-cell section under three-point bending loading. Int J Mech Sci. 2019;157-158:703–714. doi:10.1016/j.ijmecsci.2019.05.013.
  • Liu Q, Liufu K, Cui Z, et al. Multiobjective optimization of perforated square CFRP tubes for crashworthiness. Thin Walled Struct. 2020;149:106628. doi:10.1016/j.tws.2020.106628.
  • Baykasoğlu A, Baykasoğlu C, Cetin E, et al. Multi-objective crashworthiness optimization of lattice structure filled thin-walled tubes. Thin Walled Struct. 2020;149:106630. doi:10.1016/j.tws.2020.106630.
  • Hou S, Han X, Sun G, et al. Multiobjective optimization for tapered circular tubes. Thin Walled Struct. 2011;49(7):855–863. doi:10.1016/j.tws.2011.02.010.
  • Xiao Y, Hu Y, Zhang J, et al. Dynamic bending responses of CFRP thin-walled square beams filled with aluminum honeycomb. Thin Walled Struct. 2018;132:494–503. doi:10.1016/j.tws.2018.09.023.
  • Kwon KS, Lin RM. Robust finite element model updating using taguchi method. Journal of Sound & Vibration. 2005;280(1-2):77–99. doi:10.1016/j.jsv.2003.12.013.
  • Yang YS, Shih CY, Fung RF. Multi-objective optimization of the light guide rod by using the combined taguchi method and grey relational approach. J Intell Manuf. 2014;25(1):99–107. doi:10.1007/s10845-012-0678-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.