255
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Multi-objective lightweight design of automotive battery pack box for crashworthiness

, , ORCID Icon, &
Pages 292-307 | Received 19 May 2022, Accepted 23 Jun 2023, Published online: 05 Jul 2023

References

  • Belingardi G, Koricho EG. Design of a composite engine support sub-frame to achieve lightweight vehicles. IJAUTOC. 2014;1(1):90–111. doi: 10.1504/IJAUTOC.2014.064129.
  • Del Pero F, Delogu M, Pierini M. The effect of lightweight in automotive LCA perspective: estimation of mass-induced fuel consumption reduction for gasoline turbocharged vehicles. J Cleaner Prod. 2017;154:566–577. doi: 10.1016/j.jclepro.2017.04.013.
  • Liu WG, Gao YK, Guo QF, et al. Lightweight design for car-body based on crashworthiness. J Machine Des. 2015;32(5):62–66. doi: 10.13841/j.cnki.jxsj.2015.05.013.
  • Zhao-Kai LI, Qiang YU, Xuan ZHAO, et al. Crashworthiness and lightweight optimization for frontal structure of automobile under low-speed impact. China J Highway Transp. 2016;29(10):149. doi: 10.19721/j.cnki.1001-7372.2016.10.015.
  • Pan Y, Xiong Y, Dai W, et al. Crush and crash analysis of an automotive battery-pack enclosure for lightweight design. Int J Crashworthiness. 2020;27(2): 500–509. doi: 10.1080/13588265.2020.1812253.
  • Xiong Y, Pan Y, Wu L, et al. Effective weight-reduction-and crashworthiness-analysis of a vehicle’s battery-pack system via orthogonal experimental design and response surface methodology. Eng Fail Anal. 2021;128:105635. doi: 10.1016/j.engfailanal.2021.105635.
  • Lu W, Xiao-Kai C, Qing-Hai Z. Muti-objective topology optimization of an electric vehicle’s traction battery enclosure. Energy Procedia. 2016;88:874–880. doi: 10.1016/j.egypro.2016.06.103.
  • Kukreja J, Nguyen T, Siegmund T, et al. Crash analysis of a conceptual electric vehicle with a damage tolerant battery pack. Extreme Mech Lett. 2016;9:371–378. doi: 10.1016/j.eml.2016.05.004.
  • Feng-Chong L, Jin L, Ji-Qing CHEN, et al. Deformation and response analysis of pack and internal structure of electrical vehicle battery in collision. J South China Univ Tech. 2017;45(2):1–8. doi: 10.3969/j.issn.1000-565X.2017.02.001.
  • Zhu J, Zhang X, Wierzbicki T, et al. Structural designs for electric vehicle battery pack against ground impact (No. 2018-01-1438). SAE Technical Paper; 2018;8:2688–3627. doi: 10.4271/2018-01-1438.
  • Chen J, Xu P, Yao S, et al. The multi-objective structural optimisation design to improve the crashworthiness of a multi-cell structure for high-speed train. Int J Crashworthiness. 2022;27(1):24–33. doi: 10.1080/13588265.2020.1773739.
  • Xu P, Zhao H, Yao S, et al. Multi-objective optimisation of a honeycomb-filled composite energy absorber for subway vehicles. Int J Crashworthiness. 2020;25(6):603–611. doi: 10.1080/13588265.2019.1626537.
  • Xu P, Yang C, Peng Y, et al. Crash performance and multi-objective optimization of a gradual energy-absorbing structure for subway vehicles. Int J Mech Sci. 2016;107:1–12. doi: 10.1016/j.ijmecsci.2016.01.001.
  • Balamurugan R, Vijayakumar SK, Raja T, et al. Investigation on design and analysis of passenger car body crash-worthiness in frontal impact using radioss (no. 2020-28-0498). SAE Technical Paper. 2020;6:2688–3627. doi: 10.4271/2020-28-0498.
  • Li Z, Yu Q, Zhao X, et al. Crashworthiness and lightweight optimization to applied multiple materials and foam-filled front end structure of auto-body. Adv Mech Eng. 2017;9(8):168781401770280. doi: 10.1177/1687814017702806.
  • Duan L, Sun G, Cui J, et al. Crashworthiness design of vehicle structure with tailor rolled blank. Struct Multidisc Optim. 2016;53(2):321–338. doi: 10.1007/s00158-015-1315-z.
  • Yildiz AR, Solanki KN. Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. Int J Adv Manuf Technol. 2012;59(1–4):367–376. doi: 10.1007/s00170-011-3496-y.
  • Kiani M, Yildiz AR. A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization. Arch Computat Methods Eng. 2016;23(4):723–734. doi: 10.1007/s11831-015-9155-y.
  • Xu P, Yang C, Peng Y, et al. Cut-out grooves optimization to improve crashworthiness of a gradual energy-absorbing structure for subway vehicles. Materials & Design. 2016;103:132–143. doi: 10.1016/j.matdes.2016.04.059.
  • Abbasi M, Ghafari-Nazari A, Reddy S, et al. A new approach for optimizing automotive crashworthiness: concurrent usage of ANFIS and Taguchi method. Struct Multidisc Optim. 2014;49(3):485–499. doi: 10.1007/s00158-013-0986-6.
  • Peng Y, Hou L, Che Q, et al. Multi-objective robust optimization design of a front-end underframe structure for a high-speed train. Eng Optim. 2019;51(5):753–774. doi: 10.1080/0305215X.2018.1495719.
  • Sun G, Deng M, Zheng G, et al. Design for cost performance of crashworthy structures made of high strength steel. Thin Walled Struct. 2019;138:458–472. doi: 10.1016/j.tws.2018.07.014.
  • Li H. Finite element mesh generation and decision criteria of mesh quality. China Mechanical Engineering. 2012;23(3):368. doi: 10.3969/j.issn.1004-132X.2012.03.025.
  • Wang F, Xia J. Safety analysis and design of battery pack for electric vehicle. 2016:143–163.
  • Lan FC, Huang PX, Chen JQ. Study on the method of structural dynamic modeling and analyzing of the EV’s battery pack. JME. 2018;54(8):157–164. doi: 10.3901/JME.2018.08.157.
  • Zuo S, Yin B, Xu Y, et al. A simplified method of soft connected battery module for finite element method model of battery pack. Int J Energy Res. 2021;45(7):10546–10561. doi: 10.1002/er.6543.
  • Jiang L, Wang J, Zou X, et al. Analysis of GB 38031—2020 safety requirements of traction battery used by electric road vehicles. Batt Bimonth. 2020;50(3):276–279. doi: 10.19535/j.1001-1579.2020.03.017.
  • Chen W, Zuo W. Component sensitivity analysis of conceptual vehicle body for lightweight design under static and dynamic stiffness demands. IJVD. 2014;66(2):107–123. doi: 10.1504/IJVD.2014.064546.
  • Zuo W, Yu J, Saitou K. Stress sensitivity analysis and optimization of automobile body frame consisting of rectangular tubes. Int.J Automot. Technol. 2016;17(5):843–851. doi: 10.1007/s12239-016-0082-1.
  • Xiong F, Wang D, Ma Z, et al. Lightweight optimization of the front end structure of an automobile body using entropy-based grey relational analysis. Proc Institut Mech Eng Part D. 2019;233(4):917–934. doi: 10.1177/0954407018755844.
  • Xiong F, Wang D, Ma Z, et al. Structure-material integrated multi-objective lightweight design of the front end structure of automobile body. Struct Multidisc Optim. 2018;57(2):829–847. doi: 10.1007/s00158-017-1778-1.
  • Chen S, Shi T, Wang D, et al. Multi-objective optimization of the vehicle ride comfort based on kriging approximate model and NSGA-II. J Mech Sci Technol. 2015;29(3):1007–1018. doi: 10.1007/s12206-015-0215-x.
  • Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Computat. 2002;6(2):182–197. doi: 10.1109/4235.996017.
  • Wang D, Jiang R, Wu Y. A hybrid method of modified NSGA-II and TOPSIS for lightweight design of parameterized passenger car sub-frame. J Mech Sci Technol. 2016;30(11):4909–4917. doi: 10.1007/s12206-016-1010-z.
  • Arshad MH, Abido MA, Salem A, et al. Weighting factors optimization of model predictive torque control of induction motor using NSGA-II with TOPSIS decision making. IEEE Access. 2019;7:177595–177606. doi: 10.1109/Access.628763910.1109/ACCESS.2019.2958415.
  • Hao F, Lu X, Qiao Y, et al. Crashworthiness analysis of electric vehicle with energy-absorbing battery modules. Trans ASME J Eng Mater Technol. 2017;139(2):021022. doi: 10.1115/1.4035498.
  • Chen C, Xiong F, Lan F, et al. Crush simulation and optimisation study of power battery pack. IJVS. 2019;11(1):37–55. doi: 10.1504/IJVS.2019.101304.
  • Kalnaus S, Wang H, Watkins TR, et al. Features of mechanical behavior of EV battery modules under high deformation rate. Extreme Mech Lett. 2019;32:100550. doi: 10.1016/j.eml.2019.100550.
  • Jia Y, Li J, Yuan C, et al. Data-Driven safety risk prediction of Lithium-Ion battery. Adv Energy Mater. 2021;11(18):2003868. doi: 10.1002/aenm.202003868.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.