1,063
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Investigate the elastoplastic deformation behaviour of a motorcycle frame under different mechanical load configurations

ORCID Icon, &
Pages 308-319 | Received 01 Jun 2022, Accepted 20 Jul 2023, Published online: 09 Aug 2023

References

  • Cossalter V, Lot R, Massaro M. The influence of frame compliance and rider mobility on the scooter stability. Veh Syst Dyn. 2007;45(4):313–326.
  • Cossalter V. Motorcycle dynamics. 2nd English ed.; Lulu: Padova, 2006, ISBN 1430308613.
  • Sharp RS, Alstead CJ. The influence of structural flexibilities on the straight-running stability of motorcycles. Veh Syst Dyn. 1980;9(6):327–357.
  • Petrone N, Meneghetti G. Fatigue life prediction of lightweight electric moped frames after field load spectra collection and constant amplitude fatigue bench tests. Int J Fatigue. 2019;127:564–575. doi: 10.1016/j.ijfatigue.2019.05.019.
  • Petrone N, Saraceni M. Field load acquisition and variable amplitude fatigue testing on maxi-scooter motorcycles. Frattura Ed Integrità Strutturale. 2014;8(30):226–236. doi: 10.3221/IGF-ESIS.30.29.
  • Tuluie R, Ericksen GS. Racing motorcycle design process using physical and virtual testing methods. Warrendale, PA; 2000; SAE Technical Paper 2000-01-3576, 2000, https://doi.org/10.4271/2000-01-3576.
  • Peck L, Manning J, Bartlett W, et al. Eleven instrumented motorcycle crash tests and development of updated motorcycle impact-speed equations. In SAE Technical Paper Series. WCX World Congress Experience, APR. 10, 2018; SAE International400 Commonwealth Drive, Warrendale, PA, United States, 2018, https://doi.org/10.4271/2018-01-0517.
  • Raffler M, Sinz W, Erker S, et al. Influence of loading rate and out of plane direction dependence on deformation and electro-mechanical failure behavior of a lithium-ion pouch cell. J Storage Mater. 2022;56:105906. doi: 10.1016/j.est.2022.105906.
  • Ellersdorfer, C. Abbildung und bewertung des crashverhaltens von lithiumbasierten batterien für elektrisch betriebene motorräder. [Ph.D. Thesis, Technische Universität Graz, Graz, Austria, 2016].
  • Ellersdorfer C, Sevarin A, Tomasch E, et al. Battery safety evaluation of electric driven motorcycles from the perspective of accident research. Electric vehicle Symposium; Stuttgart, 2017.
  • Bisschop R, Willstrand O, Amon F, et al. Fire safety of lithium-ion batteries in road vehicles. Boras, Sweden: RISE Research Institute of Sweden; 2019.
  • Lai X, Jin C, Yi W, et al. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: recent advances and perspectives. Energy Storage Mater. 2021;35:470–499. doi: 10.1016/j.ensm.2020.11.026.
  • Kukreja J, Nguyen T, Siegmund T, et al. Crash analysis of a conceptual electric vehicle with a damage tolerant battery pack. Extreme Mech Lett. 2016;9:371–378. doi: 10.1016/j.eml.2016.05.004.
  • Zhu J, Wierzbicki T, Li W. A review of safety-focused mechanical modeling of commercial lithium-ion batteries. J Power Sources. 2018;378:153–168. doi: 10.1016/j.jpowsour.2017.12.034.
  • Macdonald MP, Chandrasekaran S, Garimella S, et al. Thermal runaway in a prismatic lithium ion cell triggered by a short circuit. J Storage Mater. 2021;40:102737. doi: 10.1016/j.est.2021.102737.
  • Feng X, Ouyang M, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 2018;10:246–267. doi: 10.1016/j.ensm.2017.05.013.
  • Yang R, Xiong R, Ma S, et al. Characterization of external short circuit faults in electric vehicle li-ion battery packs and prediction using artificial neural networks. Appl Energy. 2020;260:114253. doi: 10.1016/j.apenergy.2019.114253.
  • Sun J, Li J, Zhou T, et al. Toxicity, a serious concern of thermal runaway from commercial li-ion battery. Nano Energy. 2016;27:313–319. doi: 10.1016/j.nanoen.2016.06.031.
  • Ballo F, Gobbi M, Massera M, et al., editors. A race motorcycle frame: advanced design. ASME; New York, USA, 2014. doi: 10.1115/DETC2014-34339.
  • Sonsino C. Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety. Int J Fatigue. 2007;29(12):2246–2258. doi: 10.1016/j.ijfatigue.2006.11.015.
  • Cossalter V, Doria A, Lot R, et al. Dynamic properties of motorcycle and scooter tires: measurement and comparison. Veh Syst Dyn. 2003;39(5):329–352. doi: 10.1076/vesd.39.5.329.14145.
  • de Vries EJH, Pacejka HB. Motorcycle tyre measurements AND models. Veh Syst Dyn. 1998;29(suppl1):280–298. doi: 10.1080/00423119808969565.
  • Pacejka HB, editor. Tyre and vehicle dynamics. 2nd ed. Rotterdam: Elsevier; 2006.
  • Bocciolone M, Cheli F, Pezzola M, et al., editors. Static and dynamic properties of a motorcycle frame: experimental and numerical approach. Twelfth International Conference on Computational Methods and Experimental Measurements - CMEM XII. Southampton: WIT Press; 2005.
  • Cossalter V, Doria A, Massaro M, et al. Experimental and numerical investigation on the motorcycle front frame flexibility and its effect on stability. Mech Syst Sig Process. 2015;60–61:452–471. doi: 10.1016/j.ymssp.2015.02.011.
  • Tan KS, Wong SV, Radin Umar RS, et al. An experimental study of deformation behaviour of motorcycle front wheel-tyre assembly under frontal impact loading. Int J Impact Eng. 2006;32(10):1554–1572. doi: 10.1016/j.ijimpeng.2005.04.007.
  • Rane SS, Srividya A, Verma AK. Taguchi methods and finite element methods in reliability based crashworthiness and risk analysis of motorcycle frame. Int J Syst Assur Eng Manag. 2011;2(4):319–324. doi: 10.1007/s13198-012-0081-1.
  • ACEM, Motorcycle Accident in Depth Study (MAIDS) - In-Depth investigations of accidents involving powered two wheelers; Brussels, 2009.
  • Berg FA, Rücker P, König J. Motorcycle crash tests—an overview. Int J Crashworthines. 2005;10(4):327–339. doi: 10.1533/ijcr.2005.0349.
  • Piantini S, Pierini M, Delogu M, et al. Injury analysis of powered two‐wheeler versus other‐vehicle urban accidents. In: 2016 IRCOBI Conference Proceedings. Malaga, Spain: IRCOBI; 2016.
  • Grassi A, Baldanzini N, Barbani D, et al. A comparative analysis of MAIDS and ISO13232 databases for the identification of the most representative impact scenarios for powered 2-wheelers in Europe. Traffic Inj Prev. 2018;19(7):766–772. doi: 10.1080/15389588.2018.1497791.
  • International Organisation for Standardisation, ISO 13232-2:2005 Motorcycles - Test and analysis procedures for research evaluation of rider crash protective devices fitted to motorcycles; Switzerland, 2005.
  • Santos K, Dias JP. Motorcycle accident reconstruction: influence of structural deformation or failure. Eng Fail Anal. 2020;115:104597. doi: 10.1016/j.engfailanal.2020.104597.
  • Klug C, Feist F, Raffler M, et al. Development of a procedure to compare kinematics of human body models for pedestrian simulations. In: 2017 IRCOBI Conference Proceedings. Antwerp, Belgium: IRCOBI; 2017. p. 509–530.
  • Sevarin A, Fasching M, Ellersdorfer C. Crash safety optimisation method for the integration of the traction batteries into electric powered-two-wheelers. In: Tagungsband der 13. Internationalen Motorradkonferenz 2020, ifz Institut für Zweiradsicherheit e.V.
  • Fasching M. Optimization of an EPTW battery pack as a structural component to improve the crashworthiness, In RedCabin: Next Generation 48 V in Automotive, RedCabin, online, webinar; 2021
  • Ellersdorfer C, Sevarin A, Tomasch E, et al. Evaluation method of the crash safety of traction batteries for electric driven motorcycles. In Tagungsband der 11. Internationalen Motorradkonferenz; ifz Institut für Zweiradsicherheit e.V, Ed.; ifz Institut für Zweiradsicherheit e.V: Essen, 2016, ISBN 3923994222.
  • Chawla A, Mukherjee S, Mohan D, et al. FE simulations of motorcycle—car frontal crashes, validations and observations. Int J Crashworthines. 2005;10(4):319–326. doi: 10.1533/ijcr.2005.0344.
  • Isaac CW, Ezekwem C. A review of the crashworthiness performance of energy absorbing composite structure within the context of materials, manufacturing and maintenance for sustainability. Compos Struct. 2021;257:113081. doi: 10.1016/j.compstruct.2020.113081.
  • Gehre C. CORAplus Release 4.0.4; pdb—Partnership for Dummy Technology and Biomechanics: Gaimersheim, Germany, 2017.
  • Gehre C, Gades H, Wernicke P. Objective rating of signals using test and simulation responses. In: The 21st ESV Conference Proceedings. Stuttgart, Germany: NHTSA; 2009. p. 1–8.
  • Barbat S, Fu Y, Zhan Z, et al. Objective rating metric for dynamic systems. In: The 23rd ESV Conference Proceedings. Seoul, Republic of Korea: NHTSA; 2013. p. 1–10.
  • Giordano C, Kleiven S. Development of an unbiased validation protocol to assess the biofidelity of finite element head models used in prediction of traumatic brain injury. Stapp Car Crash J. 2016;60:363–471.
  • Somasundaram K, Zhang L, Sherman D, et al. Evaluating thoracolumbar spine response during simulated underbody blast impact using a total human body finite element model. J Mech Behav Biomed Mater. 2019;100:103398. doi: 10.1016/j.jmbbm.2019.103398.
  • Thunert C. CORAplus Release 4.0.4: User's Manual, Braunschweig, Germany, 2017. Available online: https://www.pdb-org.com/en/information/18-cora-download.html (accessed on 10 December 2022).
  • Murmann R, Harzheim L, Dominico S, et al. CoSi: correlation of signals—a new measure to assess the correlation of history response curves. Mech Syst Sig Process. 2016;80:482–502. doi: 10.1016/j.ymssp.2016.04.026.
  • ISO. Road vehicles - Objective rating metric for non-ambiguous signals ISO/TS 18571:2014(E), 2014 (cited 2020 Jan 29).