107
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Axial crashworthiness of double-hat beams with various ribs

, , , , , & show all
Pages 347-366 | Received 20 Feb 2023, Accepted 23 Jun 2023, Published online: 23 Aug 2023

References

  • Laakso A, Romanoff J, Niemelä A, et al. Free vibration by length-scale separation and inertia-induced interaction–application to large thin-walled structures. Mech Adv Mater Struct. 2023;30(6):1234–1248. doi: 10.1080/15376494.2022.2029981.
  • Du J, Hao P, Li L. Finite element analysis of energy absorption characteristics for biomimetic thin-walled multi-cellular structure inspired by horsetails. Mech Adv Mater Struct. 2022;29(27):6982–6993. doi: 10.1080/15376494.2021.1991059.
  • Zhu H, Yao S, Li Z, et al. Crashworthiness analysis of multilayered hexagonal tubes under axial and oblique loads. Mech Adv Mater Struct. 2023;30(17):3608–3629. doi: 10.1080/15376494.2022.2079031.
  • Qin S, Deng X, Liu F. Energy absorption characteristics and crashworthiness of rhombic hierarchical gradient multicellular hexagonal tubes. Mech Adv Mater Struct. 2022;1–22. doi: 10.1080/15376494.2022.2122640.
  • Li Q, Li E, Chen T, et al. Improve the frontal crashworthiness of vehicle through the design of front rail. Thin Walled Struct. 2021;162:107588. doi: 10.1016/j.tws.2021.107588.
  • Li Q, Wu L, Chen T, et al. Multi-objective optimization design of B-pillar and rocker Sub-systems of battery electric vehicle. Struct Multidisc Optim. 2021;64(6):3999–4023. doi: 10.1007/s00158-021-03073-0.
  • Güden M, Canbaz İ. The effect of cell wall material strain and strain-rate hardening behaviour on the dynamic crush response of an aluminium multi-layered corrugated core. Int J Crashworthiness. 2021;26(1):38–52. doi: 10.1080/13588265.2019.1682351.
  • Öztürk İ. Design and optimisation of hybrid material bumper beams under impact loading. Int J Crashworthiness. 2022;27(3):835–846. doi: 10.1080/13588265.2020.1858626.
  • Liu Q, Ma J, Xu X, et al. Load bearing and failure characteristics of perforated square CFRP tubes under axial crushing. Compos Struct. 2017;160:23–35. doi: 10.1016/j.compstruct.2016.10.032.
  • Zhu G, Liao J, Sun G, et al. Comparative study on metal/CFRP hybrid structures under static and dynamic loading. Int J Impact Eng. 2020;141:103509. doi: 10.1016/j.ijimpeng.2020.103509.
  • Nian Y, Wan S, Zhou P, et al. Energy absorption characteristics of functionally graded polymer-based lattice structures filled aluminum tubes under transverse impact loading. Mater Des. 2021;209:110011. doi: 10.1016/j.matdes.2021.110011.
  • Qi C, Sun Y, Hu H-T, et al. On design of hybrid material double-hat thin-walled beams under lateral impact. Int J Mech Sci. 2016;118:21–35. doi: 10.1016/j.ijmecsci.2016.09.009.
  • Chen H, Wang Y, Luo C, et al. High-strength steel beams with hexagonal web openings under impact load. J Constr Steel Res. 2023;207:107987. doi: 10.1016/j.jcsr.2023.107987.
  • Li X, Yin Y, Zhu X, et al. Performance of hollow and aluminum foam-filled multi-cell thin-walled aluminum alloy tubes (6063-T5) under axial impact. Structures. 2023;47:1803–1821. doi: 10.1016/j.istruc.2022.12.019.
  • Yang C, Chen Z, Yao S, et al. Quasi-static and low-velocity axial crushing of polyurethane foam-filled aluminium/CFRP composite tubes: an experimental study. Compos Struct. 2022;299:116083. doi: 10.1016/j.compstruct.2022.116083.
  • Ghahremanzadeh Z, Pirmohammad S. Crashworthiness performance of square, pentagonal, and hexagonal thin-walled structures with a new sectional design. Mech Adv Mater Struct. 2023;30(12):2353–2370. doi: 10.1080/15376494.2022.2053910.
  • Djamaluddin F. Crash behavior and optimization of double tubes with different cross section. Int J Crashworthiness. 2023;28(2):280–287. doi: 10.1080/13588265.2022.2075098.
  • Baroutaji A, Arjunan A, Singh G, et al. Crushing and energy absorption properties of additively manufactured concave thin-walled tubes. Results Eng. 2022;14:100424. doi: 10.1016/j.rineng.2022.100424.
  • Chen J, Li E, Li Q, et al. Crashworthiness and optimization of novel concave thin-walled tubes. Compos Struct. 2022;283:115109. doi: 10.1016/j.compstruct.2021.115109.
  • Song Z, Ming S, Li T, et al. Improving the energy absorption capacity of square CFRP tubes with cutout by introducing chamfer. Int J Mech Sci. 2021;189:105994. doi: 10.1016/j.ijmecsci.2020.105994.
  • Li Q, Wu L, Hu L, et al. Bionic polycellular structures for axial compression. Int J Mech Sci. 2022;226:107428. doi: 10.1016/j.ijmecsci.2022.107428.
  • Abdulqadir SF, Abed AA, Bassam A. Crashworthiness enhancement of thin-walled hexagonal tubes under flexural loads by using different stiffener geometries. Mater Today: Proc. 2021;42:2887–2895. doi: 10.1016/j.matpr.2020.12.739.
  • Zhang L, Bai Z, Bai F. Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections. Thin Walled Struct. 2018;122:42–51. doi: 10.1016/j.tws.2017.10.010.
  • Liu W, Lin Z, He J, et al. Crushing behavior and multi-objective optimization on the crashworthiness of sandwich structure with star-shaped tube in the center. Thin Walled Struct. 2016;108:205–214. doi: 10.1016/j.tws.2016.08.021.
  • Wu S, Li G, Sun G, et al. Crashworthiness analysis and optimization of sinusoidal corrugation tube. Thin Walled Struct. 2016;105:121–134. doi: 10.1016/j.tws.2016.03.029.
  • Baroutaji A, Arjunan A, Stanford M, et al. Deformation and energy absorption of additively manufactured functionally graded thickness thin-walled circular tubes under lateral crushing. Eng Struct. 2021;226:111324. doi: 10.1016/j.engstruct.2020.111324.
  • Yao S, Yang Z, Li Z. Crashworthiness study of double-layer sinusoidal tubes under axial loading. Int J Crashworthiness. 2022;27(5):1270–1286. doi: 10.1080/13588265.2021.1926845.
  • Tang T, Zhang W, Yin H, et al. Crushing analysis of thin-walled beams with various section geometries under lateral impact. Thin Walled Struct. 2016;102:43–57. doi: 10.1016/j.tws.2016.01.017.
  • Li Q, Zhan L, Miao X, et al. Morning glory-inspired lattice structure with negative poisson’s ratio effect. Int J Mech Sci. 2022;232:107643. doi: 10.1016/j.ijmecsci.2022.107643.
  • Li M, Sang L, Xiong Z, et al. Design and optimisation of vehicle frontal bumper beam with alternative carbon fibre-reinforced plastics in corrugated sandwich structure. Int J Crashworthiness. 2022;27(6):1635–1647. doi: 10.1080/13588265.2021.1981189.
  • Wang S, Zhang M, Pei W, et al. Energy-absorbing mechanism and crashworthiness performance of thin-walled tubes diagonally filled with rib-reinforced foam blocks under axial crushing. Compos Struct. 2022;299:116149. doi: 10.1016/j.compstruct.2022.116149.
  • Zhou J, Qin R, Chen B. Energy absorption properties of multi-cell thin-walled tubes with a double surface gradient. Thin Walled Struct. 2019;145:106386. doi: 10.1016/j.tws.2019.106386.
  • Ma W, Li Z, Xie S. Crashworthiness analysis of thin-walled bio-inspired multi-cell corrugated tubes under quasi-static axial loading. Eng Struct. 2020;204:110069. doi: 10.1016/j.engstruct.2019.110069.
  • Luo Y, Fan H. Energy absorbing ability of rectangular self-similar multi-cell sandwich-walled tubular structures. Thin Walled Struct. 2018;124:88–97. doi: 10.1016/j.tws.2017.11.042.
  • Hong W, Fan H, Xia Z, et al. Axial crushing behaviors of multi-cell tubes with triangular lattices. Int J Impact Eng. 2014;63:106–117. doi: 10.1016/j.ijimpeng.2013.08.007.
  • Peng Y, Wang S, Yao S, et al. Crashworthiness analysis and optimization of a cutting-style energy absorbing structure for subway vehicles. Thin Walled Struct. 2017;120:225–235. doi: 10.1016/j.tws.2017.09.006.
  • Li Q, Zhan L, Hu L, et al. A negative stiffness structure with multi-stable characteristic. Compos Struct. 2023;308:116715. doi: 10.1016/j.compstruct.2023.116715.
  • Li Q, Wang W, Tan H, et al. Dynamic bending behavior of double-hat beams filled with alloy hierarchical structure. Aerosp Sci Technol. 2023;137:108284. doi: 10.1016/j.ast.2023.108284.
  • Xiong F, Wang Z, Zou X, et al. On novel foam-filled double-hexagonal tube for multiple load cases. Int J Crashworthiness. 2023;28(1):127–147. doi: 10.1080/13588265.2022.2074636.
  • Tan H, He Z, Li E, et al. Crashworthiness design and multi-objective optimization of a novel auxetic hierarchical honeycomb crash box. Struct Multidisc Optim. 2021;64(4):2009–2024. doi: 10.1007/s00158-021-02961-9.
  • Wu F, Chen Y, Zhao S, et al. Compression and energy absorption characteristics of additively manufactured reticulated tubes filled with spherical reticulated shells under axial crushing. Compos Struct. 2022;288:115415. doi: 10.1016/j.compstruct.2022.115415.
  • Yao B, Ye R, Li Z, et al. Compressive properties and energy absorption of honeycomb filled square tubes produced by selective laser melting. Mater Sci Eng A. 2022;847:143259. doi: 10.1016/j.msea.2022.143259.
  • Li D, Qin R, Xu J, et al. Topology optimization of thin-walled tubes filled with lattice structures. Int J Mech Sci. 2022;227:107457. doi: 10.1016/j.ijmecsci.2022.107457.
  • Xie S, Zhang J, Liu X, et al. A reinforced energy-absorbing structure formed by combining multiple aluminum foam-filled open-hole tubes. Int J Mech Sci. 2022;224:107319. doi: 10.1016/j.ijmecsci.2022.107319.
  • Cetin E, Baykasoğlu C. Crashworthiness of graded lattice structure filled thin-walled tubes under multiple impact loadings. Thin Walled Struct. 2020;154:106849. doi: 10.1016/j.tws.2020.106849.
  • Zhang XW, Zhang QM, Ren XJ. Theoretical study on the dynamic compression and energy absorption of porous materials filled with magneto-rheological fluid. Int J Impact Eng. 2022;161:104105. doi: 10.1016/j.ijimpeng.2021.104105.
  • Li Q, Wu L, Hu L, et al. A sinusoidal beam lattice structure with negative Poisson’s ratio property. Aerosp Sci Technol. 2023;133:108103. doi: 10.1016/j.ast.2022.108103.
  • Ribeiro Filho SLM, Tonatto MLP, Hallak Panzera T, et al. Multi-objective optimisation of aluminium skins and recycled/perforated PET foams sandwich panels subjected to impact loads. Structures. 2022;43:1750–1765. doi: 10.1016/j.istruc.2022.07.071.
  • Li Q, Luo Y, Miao X, et al. Axial crashworthiness and multi-objective optimization of single-hat beams with sinusoidal cross-sections. Struct Multidisc Optim. 2022;65(10):279. doi: 10.1007/s00158-022-03388-6.
  • Alibrandi U, Impollonia N, Ricciardi G. Probabilistic eigenvalue buckling analysis solved through the ratio of polynomial response surface. Comput Methods Appl Mech Eng. 2010;199(9–12):450–464. doi: 10.1016/j.cma.2009.08.015.
  • Fan C, Huang Y, Wang Q. Sparsity-promoting polynomial response surface: a new surrogate model for response prediction. Adv Eng Softw. 2014;77:48–65. doi: 10.1016/j.advengsoft.2014.08.001.
  • Li Q, Song K, He Z, et al. The artificial tree (at) algorithm. Eng Appl Artif Intell. 2017;65:99–110. doi: 10.1016/j.engappai.2017.07.025.
  • Xiao Y, Chi H, Li Q. An improved artificial tree algorithm with two populations (IATTP). Eng Appl Artif Intell. 2021;104:104324. doi: 10.1016/j.engappai.2021.104324.
  • Li Q, He Z, Li E, et al. Development of a multi-objective artificial tree (MOAT) algorithm and its application in acoustic metamaterials. Memetic Comp. 2020;12(2):165–184. doi: 10.1007/s12293-020-00302-9.
  • Li QQ, He ZC, Li E. The feedback artificial tree (FAT) algorithm. Soft Comput. 2020;24(17):13413–13440. doi: 10.1007/s00500-020-04758-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.