107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An Efficient Method for Probability Prediction of Peak Ground Acceleration Using Fourier Amplitude Spectral Model

, &
Pages 1495-1511 | Received 10 Apr 2023, Accepted 22 Jul 2023, Published online: 09 Aug 2023

References

  • Abramowitz, M. A., and I. A. Stegun. 1972. Handbook of mathematical functions, 924. New York: Dover. 10th Printing.
  • Alamilla, J. L., J. A. Rodriguez, and R. Vai. 2020. Unification of different approaches to probabilistic seismic hazard analysis. Bulletin of the Seismological Society of America 110 (6):2816–27. doi:10.1785/0120200148.
  • Atkinson, G. M. 1996. The high-frequency shape of the source spectrum for earthquakes in Eastern and Western Canada. Bulletin of the Seismological Society of America 86 (1A):106–12. doi:10.1785/BSSA08601A0106.
  • Atkinson, G. M. 2008. Ground-motion prediction equations for eastern north America from a referenced empirical approach: Implications for epistemic uncertainty. Bulletin of the Seismological Society of America 98 (3):1304–18. doi:10.1785/0120070199.
  • Atkinson, G. M., and D. M. Boore. 2006. Earthquake ground-motion prediction equations for Eastern North America. Bulletin of the Seismological Society of America 96 (6):2181–205. doi:10.1785/0120050245.
  • Atkinson, G. M., and D. M. Boore. 2014. The attenuation of Fourier amplitudes for rock sites in Eastern North America. Bulletin of the Seismological Society of America 104 (1):513–28. doi:10.1785/0120130136.
  • Atkinson, G. M., and W. Silva. 2000. Stochastic modeling of California ground motions. Bulletin of the Seismological Society of America 90 (2):255–74. doi:10.1785/0119990064.
  • Boore, D. M. 1983. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America 73 (6A):1865–94.
  • Boore, D. M. 2003. Simulation of ground motion using the stochastic method. Pure and Applied Geophysics 160 (3):635–76. doi:10.1007/PL00012553.
  • Boore, D. M. 2018. Ground motion models for very-hard-rock sites in Eastern North America: An update. Seismological Research Letters 89 (3):1172–84. doi:10.1785/0220170218.
  • Boore, D. M. 2020. Revision of Boore (2018) ground-motion predictions for central and Eastern North America: Path and offset adjustments and extension to 200 m/s ≤ VS30 ≤ 3000 m/s. Seismological Research Letters 91 (2A):977–91. doi:10.1785/0220190190.
  • Boore, D. M., and W. B. Joyner. 1997. Site amplifications for generic rock sites. Bulletin of the Seismological Society of America 87 (2):327–41. doi:10.1785/BSSA0870020327.
  • Boore, D. M., and E. M. Thompson. 2015. Revisions to some parameters used in stochastic-method simulations of ground motion. Bulletin of the Seismological Society of America 105 (2A):1029–41. doi:10.1785/0120140281.
  • Bora, S. S., F. Cotton, and F. Scherbaum. 2019. NGA-West2 empirical Fourier and duration models to generate adjustable response spectra. Earthquake Spectra 35 (1):61–93. doi:10.1193/110317EQS228M.
  • Bora, S. S., F. Scherbaum, N. Kuehn, and P. Stafford. 2014. Fourier spectral- and duration models for the generation of response spectra adjustable to different source-, propagation-, and site conditions. Bulletin of Earthquake Engineering 12 (1):467–93. doi:10.1007/s10518-013-9482-z.
  • Bora, S. S., F. Scherbaum, N. Kuehn, and P. Stafford. 2016. On the relationship between Fourier and response spectra: Implications for the adjustment of empirical ground-motion prediction equations (GMPEs). Bulletin of the Seismological Society of America 106 (3):1235–53. doi:10.1785/0120150129.
  • Bora, S. S., F. Scherbaum, N. Kuehn, P. Staford, and B. Edwards. 2015. Development of a response spectral ground-motion prediction equation (GMPE) for seismic-hazard analysis from empirical Fourier spectral and duration models. Bulletin of the Seismological Society of America 105 (4):2192–218. doi:10.1785/0120140297.
  • Campbell, K. W. 2003. Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in Eastern North America. Bulletin of the Seismological Society of America 93 (3):1012–33. doi:10.1785/0120020002.
  • Campbell, K. W. 2009. Estimates of shear-wave Q and κ0 for unconsolidated and semiconsolidated sediments in Eastern North America. Bulletin of the Seismological Society of America 99 (4):2365–92. doi:10.1785/0120080116.
  • Cartwright, D. E., and M. S. Longuet-Higgins. 1956. The statistical distribution of the maxima of a random function. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 237: 212–32.
  • Cornell, C. A. 1968. Engineering seismic risk analysis. Bulletin of the Seismological Society of America 58 (5):1583–606. doi:10.1785/BSSA0580051583.
  • Cotton, F., F. Scherbaum, J. J. Bommer, and H. Bungum. 2006. Criteria for selecting and adjusting ground-motion models for specific target regions: Application to central Europe and rock sites. Journal of Seismology 10 (2):137. doi:10.1007/s10950-005-9006-7.
  • Davenport, A. G. 1964. Note on the distribution of the largest value of a random function with applications to rust loading. Proceedings of the Institution of Civil Engineers 28 (2):187–96. doi:10.1680/iicep.1964.10112.
  • Douglas, J. 2021. Ground motion prediction equations 1964–2021. http://www.gmpe.org.uk/.
  • Drouet, S., G. Ameri, K. L. Dortz, R. Secanell, and G. Senfaute. 2020. A probabilistic seismic hazard map for the metropolitan France. Bulletin of Earthquake Engineering 18 (5):1865–98. doi:10.1007/s10518-020-00790-7.
  • Du, W. Q., and T. C. Pan. 2020. Probabilistic seismic hazard assessment for Singapore. Natural Hazards 103 (3):2883–903. doi:10.1007/s11069-020-04107-4.
  • Eurocode 8. 2004. Design of structures for earthquake resistance, part 1: General rules, seismic actions and rules for buildings. EN 2004–1–1. Brussels, Belgium: European Committee for Standardization (CEN).
  • Falak, Z., A. Abdullah, R. K. Seshagiri, and N. Satyam. 2023. Seismic hazard assessment of Kashmir Region using logic tree approach: Focus on sensitivity of PSHA results towards declustering procedures and GMPEs. Pure and Applied Geophysics 180 (3):789–827. doi:10.1007/s00024-023-03239-5.
  • Folesky, J., J. Kummerow, and S. A. Shapiro. 2021. Stress drop variations in the region of the 2014 MW8.1 Iquique Earthquake, Northern Chile. Journal of Geophysical Research 126 (4):1–20. doi:10.1029/2020jg005684.
  • Foytong, P., T. Ornthammarathb, R. Arjwech, A. Janpila, N. Areemit, A. Ruangrassamee, and P. Chindaprasirt. 2020. Probabilistic seismic hazard assessment of North-Eastern Thailand. Journal of Civil Engineering 24 (4):1–13.
  • Fujiwara, H., S. Kawai, S. Aoi, N. Morikawa, S. Senna, K. Kobayashi, T. Ishii, T. Okumura, and Y. Hayakawa. 2006. National seismic hazard maps for Japan. Bulletin of Earthquake Research Institute 81:221–32.
  • GB 18306-2015. 2015. Seismic ground motion parameters zonation map of China. Beijing: China Building Industry Press. (In Chinese).
  • GB 50011-2010. 2016. Code for seismic design of buildings, 2016 ed. Beijing: China Building Industry Press. (In Chinese).
  • Hanks, T. C. 1979. B values and ω-γ seismic source models: Implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion. Journal of Geophysical Research 84 (B5):2235–42. doi:10.1029/JB084iB05p02235.
  • Hanks, T. C., and H. Kanamori. 1979. A moment magnitude scale. Journal of Geophysical Research 84 (B5):2348–50. doi:10.1029/JB084iB05p02348.
  • Hanks, T. C., and R. K. McGuire. 1981. The character of high-frequency strong ground motion. Bulletin of the Seismological Society of America 71 (6):2071–95. doi:10.1785/BSSA0710062071.
  • Hassani, B., and G. M. Atkinson. 2015. Referenced empirical ground‐motion model for Eastern North America. Seismological Research Letters 86 (2):477–91.
  • Hsu, T. Y., R. T. Wu, C. W. Liang, C.-H. Kuo, and C.-M. Lin. 2020. Peak ground acceleration estimation using P-wave parameters and horizontal-to-vertical spectral ratios. Terrestrial Atmospheric and Oceanic Sciences 31 (1):1–8. doi:10.3319/TAO.2019.07.04.01.
  • Jarahi, H. 2017. PSHA study using EZ-Frisk software case study Baychebaq Dam Site. Current Research in Geosciences 7 (2):37–46. doi:10.3844/ajgsp.2017.37.46.
  • JGJ 3-2010. 2010. Technical specification for concrete structures of tall building. Beijing: China Building Industry Press. (In Chinese).
  • Kolli, M. K., and S. S. Bora. 2021. On the use of duration in random vibration theory (RVT) based ground motion prediction: A comparative study. Bulletin of Earthquake Engineering 19 (4):1687–707. doi:10.1007/s10518-021-01052-w.
  • Kottke, A. R., and E. M. Rathje. 2013. Comparison of time series and random-vibration theory site-response methods. Bulletin of the Seismological Society of America 103 (3):2111–27. doi:10.1785/0120120254.
  • Li, B., M. B. Sørensen, K. Kuvvet Atakan, Y. Li, and Z. Li. 2020. Probabilistic seismic hazard assessment for the Shanxi Rift system, North China. Bulletin of the Seismological Society of America 110 (1):127–53. doi:10.1785/0120190099.
  • Mahmoud, E., S. A. Mohamed, and G. Hanan. 2021. Up-to-date PSHA along the Gulf of Aqaba-Dead Sea transform fault. Soil Dynamics and Earthquake Engineering 148 (4):106835. doi:10.1016/j.soildyn.2021.106835.
  • McGuire, R. K. 1976. “FORTRAN computer program for seismic risk analysis,” United States department of the interior geological survey. Open-File Report, 76–67.
  • Nakano, K., and H. Kawase. 2019. Source parameters and site amplifications estimated by generalized inversion technique: Focusing on the 2018 Hokkaido Iburi-Tobu earthquake. Earth, Planets and Space 71 (1):66. doi:10.1186/s40623-019-1047-1.
  • Rackwitz, R., and B. Flessler. 1978. Structural reliability under combined random load sequences. Computers & Structures 9 (5):489–94. doi:10.1016/0045-7949(78)90046-9.
  • Rahman, A., F. A. Najam, S. Zaman, A. Rasheed, and I. A. Rana. 2021. An updated probabilistic seismic hazard assessment (PSHA) for Pakistan. Bulletin of Earthquake Engineering 19 (4):1625–62. doi:10.1007/s10518-021-01054-8.
  • Rathje, E. M., and M. C. Ozbey. 2006. Site-specific validation of random vibration theory-based seismic site response analysis. Journal of Geotechnical and Geoenvironmental Engineering 132 (7):911–22. doi:10.1061/(ASCE)1090-0241(2006)132:7(911).
  • RLB. 2015. Recommendations for loads on buildings. Tokyo: Architectural Institute of Japan. (in Japanese).
  • Rosenblueth, E. 1975. Point estimates for probability moments. Proceedings of the National Academy of Sciences of the United States of America 72 (10):3812–14. doi:10.1073/pnas.72.10.3812.
  • Saurav, S., S. Aniruddha, H. Reginald, J. Dehls, R. K. Bhasin, I. Penna, and V. Gupta. 2022. Probabilistic seismic hazard analysis (PSHA) to estimate the input ground motions for co-seismic landslide hazard assessment: A case study on Himalayan highways, Sikkim India. Physics and Chemistry of the Earth 127:103157. doi:10.1016/j.pce.2022.103157.
  • Sinhal, R., and R. Sarkar. 2020. Seismic hazard assessment of Dhanbad City, India, by deterministic approach. Natural Hazards 103 (2):1857–80. doi:10.1007/s11069-020-04059-9.
  • Sun, X. D., X. X. Tao, S. S. Duan, and C. Liu. 2013. Kappa (κ) derived from accelerograms recorded in the 2008 Wenchuan, mainshock, Sichuan, China. Journal of Asian Earth Sciences 73:306–16. doi:10.1016/j.jseaes.2013.05.008.
  • Vanmarcke, E. H. 1975. On the distribution of the first-passage time for normal stationary random processes. Journal of Applied Mechanics 42 (1):215–20. doi:10.1115/1.3423521.
  • Vanmarcke, E. H., and S. S. P. Lai. 1980. Strong-motion duration and RMS amplitude of earthquake records. Bulletin of the Seismological Society of America 70 (4):1293–307.
  • Vetter, C., and A. A. Taflanidis. 2012. Global sensitivity analysis for stochastic ground motion modeling in seismic-risk assessment. Soil Dynamics and Earthquake Engineering 38:128–43. doi:10.1016/j.soildyn.2012.01.004.
  • Villani, M., Z. Lubkowski, M. Free, R. M. W. Musson, B. Polidoro, R. McCully, A. Koskosidi, C. Oakman, T. Courtney, M. Walsh, et al. 2020. A probabilistic seismic hazard assessment for Wylfa Newydd, a new nuclear site in the United Kingdom. Bulletin of Earthquake Engineering 18 (9):4061–89. doi:10.1007/s10518-020-00862-8.
  • Wang, X., and E. M. Rathje. 2016. Influence of peak factors on site amplification from random vibration theory based site-response analysis. Bulletin of the Seismological Society of America 106 (4):1–14. doi:10.1785/0120150328.
  • Wang, X., and E. M. Rathje. 2018. Development of ground-motion duration models for use in random vibration theory site-response analysis. Bulletin of the Seismological Society of America 108 (4):2104–16. doi:10.1785/0120170211.
  • Xu, H., and S. Rahman. 2004. A generalized dimension-reduction method for multi-dimensional integration in stochastic mechanics. International Journal for Numerical Methods in Engineering 61 (12):1992–2019. doi:10.1002/nme.1135.
  • Zhang, H. Z., and Y. G. Zhao. 2020. Damping modification factor based on random vibration theory using a source-based ground-motion model. Soil Dynamics and Earthquake Engineering 136:106225. doi:10.1016/j.soildyn.2020.106225.
  • Zhao, Y. G., and Z. H. Lu. 2021. Structural reliability: Approaches from perspectives of statistical moments. 1st ed. Hoboken: Wiley.
  • Zhao, Y. G., and T. Ono. 2000a. New point-estimates for probability moments. Journal of Engineering Mechanics 126 (4):433–36. doi:10.1061/(ASCE)0733-9399(2000)126:4(433).
  • Zhao, Y. G., and T. Ono. 2000b. Third-moment standardization for structural reliability analysis. Journal of Structural Engineering 126 (6):724–32. doi:10.1061/(ASCE)0733-9445(2000)126:6(724).
  • Zhao, Y. G., T. Ono, H. Idota, and T. Hirano. 2001. A three-parameter distribution used for structural reliability evaluation. Journal of Structural & Construction Engineering 66 (546):31–38. doi:10.3130/aijs.66.31_6.
  • Zhao, Y. G., R. Zhang, and H. Z. Zhang. 2023. Probabilistic prediction of ground-motion intensity for regions lacking strong ground-motion records. Soil Dynamics and Earthquake Engineering 165:107706. doi:10.1016/j.soildyn.2022.107706.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.