76
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Conditionally Simulated Spatial Non-Stationary Earthquake Accelerograms Using Wavelet Packets

ORCID Icon, , &
Pages 1643-1659 | Received 17 Dec 2022, Accepted 05 Aug 2023, Published online: 14 Aug 2023

References

  • Amiri, G. G., A. Shahjouei, and S. Saadat. 2011. Hybrid evolutionary-neural network approach in generation of artificial accelerograms using principal component analysis and wavelet-packet transform. Journal of Earthquake Engineering 15 (1):50–76. doi:10.1080/13632469.2010.517281.
  • Bi, K., and H. Hao. 2012. Modelling and simulation of spatially varying earthquake ground motions at sites with varying conditions. Probabilistic Engineering Mechanics 29:92–104. doi:10.1016/j.probengmech.2011.09.002.
  • Bilici, Y., A. Bayraktar, K. Soyluk, K. Haciefendioğlu, Ş. Ateş, and S. Adanur. 2009. Stochastic dynamic response of dam–reservoir–foundation systems to spatially varying earthquake ground motions. Soil Dynamics and Earthquake Engineering 29 (3):444–58. doi:10.1016/j.soildyn.2008.05.001.
  • Cacciola, P., and G. Deodatis. 2011. A method for generating fully non-stationary and spectrum-compatible ground motion vector processes. Soil Dynamics and Earthquake Engineering 31 (3):351–60. doi:10.1016/j.soildyn.2010.09.003.
  • Cecini, D., and A. Palmeri. 2015. Spectrum-compatible accelerograms with harmonic wavelets. Computers and Structures 147:26–35. doi:10.1016/j.compstruc.2014.10.013.
  • Chen, M. T., and R. S. Harichandran. 2001. Response of an earth dam to spatially varying earthquake ground motion. Journal of Engineering Mechanics 27 (9):932–37. doi:10.1061/(ASCE)0733-9399(2001)127:9(932).
  • Deodatis, G. 1996. Non-stationary stochastic vector processes: Seismic ground motion applications. Probabilistic Engineering Mechanics 11 (3):149–67. doi:10.1016/0266-8920(96)00007-0.
  • Dumanogluid, A. A., and K. Soyluk. 2003. A stochastic analysis of long span structures subjected to spatially varying ground motion including the site response effect. Engineering Structures 25 (10):1301–10. doi:10.1016/S0141-0296(03)00080-4.
  • Giaralis, A., and P. D. Spanos. 2009. Wavelet-based response spectrum compatible synthesis of accelerograms-Eurocode application (EC8). Soil Dynamics Earthquake Engineering 29 (1):219–35. doi:10.1016/j.soildyn.2007.12.002.
  • Gurley, K., and A. Kareem. 1999. Applications of wavelet transforms in earthquake, wind and ocean engineering. Engineering Structures 21 (2):149–67.
  • Hao, H., C. S. Oliveira, and J. Penzien. 1989. Multiple-station ground motion processing and simulation based on smart-1 array data. Nuclear Engineering and Design 111 (3):293–310. doi:10.1016/0029-5493(89)90241-0.
  • Harichandran, R. S., and E. H. Vanmarcke. 1986. Stochastic variation of earthquake ground motion in space and time. Journal of Engineering Mechanics 112 (2):154–74. doi:10.1061/(ASCE)0733-9399(1986)112:2(154).
  • Hoshiya, M. 1995. Kriging and conditional simulation of a Gaussian filed. Journal of Engineering Mechanics ASCE 121 (2):181–86. doi:10.1061/(ASCE)0733-9399(1995)121:2(181).
  • Huang, G., and X. Chen. 2009. Wavelets-based estimation of multivariate evolutionary spectra and its application to nonstationary downburst winds. Engineering Structures 31 (4):976–89. doi:10.1016/j.engstruct.2008.12.010.
  • Iyama, J., and H. Kuwamura. 1999. Application of wavelets to analysis and simulation of earthquake motions. Earthquake Engineering Structure Dynamics 28 (3):255–72. doi:10.1002/(SICI)1096-9845(199903)28:3<255:AID-EQE815>3.0.CO;2-C.
  • Kameda, H., and H. Morikawa. 1992. An interpolating stochastic process for simulation of conditional random fields. Probabilistic Engineering Mechanics 7 (4):243–54. doi:10.1016/0266-8920(92)90028-G.
  • Kameda, H., and H. Morikawa. 1994. Conditioned stochastic processes for conditional random fields. Journal of Engineering Mechanics 120 (4):855–75. doi:10.1061/(ASCE)0733-9399(1994)120:4(855).
  • Loh, C. H., J. Penzien, and Y. B. Tsai. 2010. Engineering analyses of smart 1 array accelerograms. Earthquake Engineering and Structural Dynamics 10 (4):575–91. doi:10.1002/eqe.4290100407.
  • Meyer, Y. 1986. Principle d’incertitude, bases hilbertiennes et algebres d’operateurs. Séminaire Bourbaki 662:209–23.
  • Mukherjee, S., and V. K. Gupta. 2002a. Wavelet-base characterization of design ground motions. Earthquake Engineering Structural Dynamics 31 (5):1173–90. doi:10.1002/eqe.155.
  • Mukherjee, S., and V. K. Gupta. 2002b. Wavelet-base generation of spectrum-compatible time-histories. Soil Dynamics and Earthquake Engineering 22 (9):799–804. doi:10.1016/S0267-7261(02)00101-X.
  • Oliveira, C. S., H. Hao, and J. Penzien. 1991. Ground motion modeling for multiple-input structural analysis. Structural Safety 10 (1–3):79–93. doi:10.1016/0167-4730(91)90007-V.
  • Ren, Y. J., I. Elishakoff, and M. Shinozuka. 1996. Simulation of multivariate Gaussian fields conditioned by realizations of the fields and their derivatives. Journal of Applied Mechanics 63 (3):758–65. doi:10.1115/1.2823360.
  • Saragoni, G. R., and G. C. Hart. 1973. Simulation of artificial earthquakes. Earthquake Engineering and Structural Dynamics 2 (3):249–67. doi:10.1002/eqe.4290020305.
  • Sarkar, K., K. Vinay, and C. Riya. 2016. Wavelet-based generation of spatially correlated accelerograms. Soil Dynamics and Earthquake Engineering 87:116–24. doi:10.1016/j.soildyn.2016.05.005.
  • Shama, A. A. 2007. Simplified procedure for simulating spatially correlated earthquake ground motions. Engineering Structures 29 (2):248–58. doi:10.1016/j.engstruct.2006.04.018.
  • Shinozuka, M., and R. Zhang. 1996. Equivalence between Kriging and CPDF methods for conditional simulation. Journal of Engineering Mechanics 122 (6):530–38. doi:10.1061/(ASCE)0733-9399(1996)122:6(530).
  • Soyluk, K. 2004. Comparison of random vibration methods for multi-support seismic excitation analysis of long-span bridges. Engineering Structures 26 (11):1573–83. doi:10.1016/j.engstruct.2004.05.016.
  • Spanos, P. D., and G. Faill. 2004. Evolutionary spectra estimation using wavelets. Journal of Engineering Mechanics 130 (8):952–60. doi:10.1061/(ASCE)0733-9399(2004)130:8(952).
  • Vanmarcke, E. H., and G. A. Fenton. 1991. Conditioned simulation of local fields of earthquake ground motion. Structural Safety 10 (1–3):247–64. doi:10.1016/0167-4730(91)90018-5.
  • Vanmarcke, E. H., E. Heredia-Zavoni, and G. A. Fenton. 1993. Conditional simulation of spatially correlated earthquake ground motion. Journal of Engineering Mechanics 119 (11):2333–52. doi:10.1061/(ASCE)0733-9399(1993)119:11(2333).
  • Wu, Y. X., Y. F. Gao, N. Zhang, and D. Y. Li. 2016. Simulation of spatially varying ground motions in V-shaped symmetric canyons. Journal of Earthquake Engineering 20 (6):992–1010. doi:10.1080/13632469.2015.1010049.
  • Yaghmaei-Sabegh, S. 2010. Detection of pulse-like ground motions based on continues wavelet transform. Journal of Seismology 14 (4):715–26. doi:10.1007/s10950-010-9193-8.
  • Yaghmaei-Sabegh, S. 2012. Application of wavelet transforms on characterization of inelastic displacement ratio spectra for pulse-like ground. Motions Journal of Earthquake Engineering 16 (3–4):561–78. doi:10.1080/13632469.2011.640739.
  • Yaghmaei-Sabegh, S. 2014. Time–frequency analysis of the 2012 double earthquakes records in North-West of Iran. Bulletin of Earthquake Engineering 12 (2):585–606. doi:10.1007/s10518-013-9531-7.
  • Yamamoto, Y., and W. Baker. 2013. Stochastic model for earthquake ground motion using wavelet packets. Bulletin of the Seismological Society of America 103 (6):3044–56. doi:10.1785/0120120312.
  • Zerva, A. 2009. Spatial variation of seismic ground motions, modelling and engineering applications. Boca Raton: CRC.
  • Zhang, D. Y., W. Liu, W. C. Xie, and M. D. Pandey. 2013. Modeling of spatially correlated, site-reflected, and nonstationary ground motions compatible with response spectrum. Soil Dynamics and Earthquake Engineering 55:21–32. doi:10.1016/j.soildyn.2013.08.002.
  • Zhang, Y. H., Q. S. Li, J. H. Lin, and F. W. Williams. 2009. Random vibration analysis of long-span structures subjected to spatially varying ground motions. Soil Dynamics and Earthquake Engineering 29 (4):620–29. doi:10.1016/j.soildyn.2008.06.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.