285
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimal Properties of Nonlinear Viscous Dampers in Steel Structures Considering the Life Cycle Cost

, ORCID Icon, ORCID Icon &
Pages 1685-1708 | Received 27 Apr 2023, Accepted 11 Aug 2023, Published online: 23 Aug 2023

References

  • Aguirre, J. J., J. L. Almazán, and C. J. Paul. 2013. Optimal control of linear and nonlinear asymmetric structures by means of passive energy dampers. Earthquake Engineering & Structural Dynamics 42 (3):377–95. doi:10.1002/eqe.2211.
  • Ahmadie Amiri, H., M. Hosseini, and H. E. Estekanchi. 2021. Efficient seismic risk assessment of irregular steel‐framed buildings through endurance time analysis of consistent fish‐bone model. The Structural Design of Tall & Special Buildings 31 (2). doi:10.1002/tal.1901.
  • Akehashi, H., and I. Takewaki. 2022. Inverse optimal damper placement via shear model for elastic–plastic moment-resisting frames under large-amplitude ground motions. Engineering Structures 250:113457. doi:10.1016/j.engstruct.2021.113457.
  • ASCE41-17. 2017. Seismic evaluation and retrofit of existing buildings. Seismic Evaluation and Retrofit of Existing Buildings. doi:10.1061/9780784414859.
  • ASCE7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures. 2016. Asce7-16.
  • Aydin, E. 2012. Optimal damper placement based on base moment in steel building frames. Journal of Constructional Steel Research 79:216–25. doi:10.1016/j.jcsr.2012.07.011.
  • Aydin, E., M. H. Boduroglu, and D. Guney. 2007. Optimal damper distribution for seismic rehabilitation of planar building structures. Engineering Structures 29 (2):176–85. doi:10.1016/j.engstruct.2006.04.016.
  • Berquist, M., R. De Pasquale, S. Frye, A. Gilani, A. Klembczyk, D. Lee, and C. Winters . 2019. Fluid viscous dampers-general guidelines for engineers including a brief history. USA: Taylor Devices Inc.
  • Chan, P.-T., and Q. T. M. Ma. 2022. Optimising viscous damper placement in frame buildings with element exchange method for multiple seismic hazard levels. Journal of Earthquake Engineering 27 (12):3536–63. doi:10.1080/13632469.2022.2139782.
  • CityFeet. 2020. Commercial real estate for sale, lease & coworking space. 2020. Accessed March 14, 2020. www.cityfeet.com.
  • Clough, R. W., and J. Penzien. 1975. Of structures. New York: McGraw-Hill.
  • Constantinou, M. C., and M. D. Symans. 1993. Experimental study of seismic response of buildings with supplemental fluid dampers. The Structural Design of Tall Buildings 2 (2):93–132. doi:10.1002/tal.4320020203.
  • Dall′ Asta, A., E. Tubaldi, and L. Ragni. 2016. Influence of the nonlinear behavior of viscous dampers on the seismic demand hazard of building frames. Earthquake Engineering & Structural Dynamics 45 (1):149–69. doi:10.1002/eqe.2623.
  • De Domenico, D., and I. Hajirasouliha. 2021. Multi-level performance-based design optimisation of steel frames with nonlinear viscous dampers. Bulletin of Earthquake Engineering 19 (12):5015–49. doi:10.1007/s10518-021-01152-7.
  • Del Gobbo, G. M., A. Blakeborough, and M. S. Williams. 2018. Improving total-building seismic performance using linear fluid viscous dampers. Bulletin of Earthquake Engineering 16 (9):4249–72. doi:10.1007/s10518-018-0338-4.
  • Di Paola, M., and G. Navarra. 2009. Stochastic seismic analysis of MDOF structures with nonlinear viscous dampers. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures 16 (3):303–18. doi:10.1002/stc.254.
  • Dolce, M., D. Cardone, F. C. Ponzo, and C. Valente. 2005. Shaking table tests on reinforced concrete frames without and with passive control systems. Earthquake Engineering & Structural Dynamics 34 (14):1687–717. doi:10.1002/eqe.501.
  • Douglas, P. T. 2013. History, design, and applications of fluid dampers in structural engineering. USA: Taylor Devices, Inc.
  • Estekanchi, H. E., V. Valamanesh, and A. Vafai. 2007. Application of endurance time method in linear seismic analysis. Engineering Structures 29 (10):2551–62. doi:10.1016/j.engstruct.2007.01.009.
  • ETABS, Berkeley, CA, U. S. A. 2020. Computer and structures Inc.
  • Fema P695. 2009. Quantification of building seismic performance factors. Fema P695 (June).
  • Garcia, D. L. 2001. A simple method for the design of optimal damper configurations in MDOF structures. Earthquake Spectra 17 (3):387–98. doi:10.1193/1.1586180.
  • Garc, A. B., J. Jos, and D. Coz. 2006. Design optimization of 3D steel structures: Genetic algorithms vs. classical techniques. Journal of Constructional Steel Research 62 (12):1303–09. doi:10.1016/j.jcsr.2006.02.005.
  • Gidaris, I., and A. A. Taflanidis. 2015. Performance assessment and optimization of fluid viscous dampers through life-cycle cost criteria and comparison to alternative design approaches. Bulletin of Earthquake Engineering 13 (4):1003–28. doi:10.1007/s10518-014-9646-5.
  • Gidaris, I., A. A. Taflanidis, and G. P. Mavroeidis. 2018. Multiobjective design of supplemental seismic protective devices utilizing lifecycle performance criteria. Journal of Structural Engineering 144 (3):4017225. doi:10.1061/(ASCE)ST.1943-541X.0001969.
  • Goulet, C. A., C. B. Haselton, J. Mitrani‐Reiser, J. L. Beck, G. G. Deierlein, K. A. Porter, and J. P. Stewart. 2007. Evaluation of the seismic performance of a code‐conforming reinforced‐concrete frame building—from seismic hazard to collapse safety and economic losses. Earthquake Engineering & Structural Dynamics 36 (13):1973–97. doi:10.1002/eqe.694.
  • Gupta, A. 1999. Seismic demands for performance evaluation of steel moment resisting frame structures. USA: Stanford University.
  • Horton, T. A., I. Hajirasouliha, B. Davison, and Z. Ozdemir. 2021a. More efficient design of reduced beam sections (RBS) for maximum seismic performance. Journal of Constructional Steel Research 183:106728. doi:10.1016/j.jcsr.2021.106728.
  • Horton, T. A., I. Hajirasouliha, B. Davison, Z. Ozdemir, and I. Abuzayed. 2021b. Development of more accurate cyclic hysteretic models to represent RBS connections. Engineering Structures 245:112899. doi:10.1016/j.engstruct.2021.112899.
  • Hwang, S.-H., J.-S. Jeon, and K. Lee. 2019. Evaluation of economic losses and collapse safety of steel moment frame buildings designed for risk categories II and IV. Engineering Structures 201:109830. doi:10.1016/j.engstruct.2019.109830.
  • Hwang, J.-S., W.-C. Lin, and N.-J. Wu. 2013. Comparison of distribution methods for viscous damping coefficients to buildings. Structure and Infrastructure Engineering 9 (1):28–41.
  • Karami, M., H. E. Estekanchi, I. Hajirasouliha, and S. A. Mirfarhadi. 2022. Value-based seismic performance optimization of steel frames equipped with viscous dampers. Journal of Earthquake Engineering 1–27. doi:10.1080/13632469.2022.2155733.
  • Kasai, K., Y. Fu, and A. Watanabe. 1998. Passive control systems for seismic damage mitigation. Journal of Structural Engineering 124 (5):501–12. doi:10.1061/(ASCE)0733-9445(1998)124:5(501).
  • Kolour, N. A., M. C. Basim, and M. Chenaghlou. 2021. Multi-objective optimum design of nonlinear viscous dampers in steel structures based on life cycle cost. Structures 34:3776–88. doi:10.1016/j.istruc.2021.09.100.
  • Lee, D., and D. P. Taylor. 2001. Viscous damper development and future trends. The Structural Design of Tall Buildings 10 (5):311–20. doi:10.1002/tal.188.
  • Lignos, D. G., and H. Krawinkler. 2011. Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading. Journal of Structural Engineering 137 (11):1291–302. doi:10.1061/(ASCE)ST.1943-541X.0000376.
  • Li, S., K. Liu, X. Liu, C. Zhai, and F. Xie. 2019. Efficient structural seismic performance evaluation method using improved endurance time analysis. Earthquake Engineering and Engineering Vibration 18 (4):795–809. doi:10.1007/s11803-019-0485-x.
  • Lin, W., and A. K. Chopra. 2002. Earthquake response of elastic SDF systems with non‐linear fluid viscous dampers. Earthquake Engineering & Structural Dynamics 31 (9):1623–42. doi:10.1002/eqe.179.
  • Lin, W., and A. K. Chopra. 2003. Asymmetric one‐storey elastic systems with non‐linear viscous and viscoelastic dampers: Earthquake response. Earthquake Engineering & Structural Dynamics 32 (4):555–77. doi:10.1002/eqe.237.
  • Lin, J.-L., T.-H. Liu, and K.-C. Tsai. 2015. Real-valued modal response history analysis for asymmetric-plan buildings with nonlinear viscous dampers. Soil Dynamics and Earthquake Engineering 77:97–110. doi:10.1016/j.soildyn.2015.05.002.
  • Liu, W., M. Tong, and G. C. Lee. 2005. Optimization methodology for damper configuration based on building performance indices. Journal of Structural Engineering 131 (11):1746–56. doi:10.1061/(ASCE)0733-9445(2005)131:11(1746).
  • Lopez Garcia, D., and T. T. Soong. 2002. Efficiency of a simple approach to damper allocation in MDOF structures. Journal of Structural Control 9 (1):19–30. doi:10.1002/stc.3.
  • Lu, Y. X., Y. Q. Cai, Q. F. Qu, and Q. H. Zhan. 2012. Study on the effect of supporting stiffness on energy dissipation efficiency of viscous dampers. Applied Mechanics and Materials 105:96–101. doi:10.4028/www.scientific.net/AMM.105-107.96.
  • Martinez-Rodrigo, M., and M. L. Romero. 2003. An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications. Engineering Structures 25 (7):913–25. doi:10.1016/S0141-0296(03)00025-7.
  • Mashayekhi, M., H. E. Estekanchi, A. Vafai, and S. A. Mirfarhadi. 2021. Simulation of cumulative absolute velocity consistent endurance time excitations. Journal of Earthquake Engineering 25 (5):892–917. doi:10.1080/13632469.2018.1540371.
  • Mashayekhi, M., H. E. Estekanchi, H. Vafai, S. A. Mirfarhadi, C. Engineering, A. Ave, and P. O. Box. 2018. Development of hysteretic energy compatible endurance time excitations and its application. Engineering Structures 177 (September):753–69. doi:10.1016/j.engstruct.2018.09.089.
  • Mayes, R., N. Wetzel, B. Weaver, K. Tam, W. Parker, A. Brown, and D. Pietra. 2013. Performance based design of buildings to assess damage and downtime and implement a rating system. Bulletin of the New Zealand Society for Earthquake Engineering 46 (1):40–55. doi:10.5459/bnzsee.46.1.40-55.
  • McGuire, R. K. 2008. Probabilistic seismic hazard analysis: Early history. Earthquake Engineering & Structural Dynamics 37 (3):329–38. doi:10.1002/eqe.765.
  • Mirfarhadi, S. A., and H. E. Estekanchi. 2020. Value based seismic design of structures using performance assessment by the endurance time method. Structure and Infrastructure Engineering 16 (10):1397–415. doi:10.1080/15732479.2020.1712436.
  • Mirfarhadi, S. A., H. E. Estekanchi, and M. Sarcheshmehpour. 2021. On optimal proportions of structural member cross-sections to achieve best seismic performance using value based seismic design approach. Engineering Structures 231:111751. doi:10.1016/j.engstruct.2020.111751.
  • Miyamoto, H. K., M. Eeri, J. P. Singh, and M. Eeri. 2002. Performance of structures with passive energy dissipators. Earthquake Spectra 18 (1):105–19. doi:10.1193/1.1468650.
  • Movaffaghi, H., and O. Friberg. 2006. Optimal placement of dampers in structures using genetic algorithm. Engineering Computations 23 (6):597–606. doi:10.1108/02644400610680324.
  • Narkhede, D. I., and R. Sinha. 2014. Behavior of nonlinear fluid viscous dampers for control of shock vibrations. Journal of Sound and Vibration 333 (1):80–98. doi:10.1016/j.jsv.2013.08.041.
  • NEHRP Consultants Joint Venture. 2010. Evaluation of the FEMA P-695 methodology for quantification of building seismic performance factors (NIST GCR 10-917-8). Gaithersburg, MD: National Institute of Standards and Technology.
  • OpenSees. 2018. Open system for earthquake engineering simulation Version 2.4.5 [Software]. Berkeley, CA: Pacific Earthquake Engineering Research Center.
  • P-58, F. 2018. FEMA P-58-1: Seismic performance assessment of buildings. Volume 1 – Methodology. Fema P-58 1 (December 2018):340.
  • Park, K.-S., H.-M. Koh, and D. Hahm. 2004. Integrated optimum design of viscoelastically damped structural systems. Engineering Structures 26 (5):581–91. doi:10.1016/j.engstruct.2003.12.004.
  • Pavlou, E., and M. C. Constantinou. 2006. Response of nonstructural components in structures with damping systems. Journal of Structural Engineering 132 (7):1108–17. doi:10.1061/(ASCE)0733-9445(2006)132:7(1108).
  • Pekcan, G., J. B. Mander, and S. S. Chen. 1999. Fundamental considerations for the design of non‐linear viscous dampers. Earthquake Engineering & Structural Dynamics 28 (11):1405–25. doi:10.1002/(SICI)1096-9845(199911)28:11<1405:AID-EQE875>3.0.CO;2-A.
  • Rahgozar, A., H. E. Estekanchi, and S. A. Mirfarhadi. 2023. On optimal lead rubber base-isolation design for steel moment frames using value-based seismic design approach. Soil Dynamics and Earthquake Engineering 164:107520.
  • Rahimi, E., and H. E. Estekanchi. 2015. Collapse assessment of steel moment frames using endurance time method. Earthquake Engineering and Engineering Vibration 14 (2):347–60. doi:10.1007/s11803-015-0027-0.
  • RS Means. 2021. Construction cost indexes with RSMeans data January 2021 (means construction cost indexes).
  • Shin, H., and M. P. Singh. 2014. Minimum failure cost-based energy dissipation system designs for buildings in three seismic regions – Part I: Elements of failure cost analysis. Engineering Structures 74:266–74. doi:10.1016/j.engstruct.2014.04.054.
  • Shin, H., and M. P. Singh. 2017. Minimum life-cycle cost-based optimal design of yielding metallic devices for seismic loads. Engineering Structures 144:174–84. doi:10.1016/j.engstruct.2017.04.054.
  • Singh, M. P., and L. M. Moreschi. 2002. Optimal placement of dampers for passive response control. Earthquake Engineering & Structural Dynamics 31 (4):955–76. doi:10.1002/eqe.132.
  • Symans, M. D., and M. C. Constantinou. 1998. Passive fluid viscous damping systems for seismic energy dissipation. ISET Journal of Earthquake Technology 35 (4):185–206.
  • Tafakori, E., S. Pourzeynali, and H. E. Estekanchi. 2017. Probabilistic seismic loss estimation via endurance time method. Earthquake Engineering and Engineering Vibration 16 (1):233–45. doi:10.1007/s11803-017-0379-8.
  • Taflanidis, A. A., and J. L. Beck. 2009. Life-cycle cost optimal design of passive dissipative devices. Structural Safety 31 (6):508–22. doi:10.1016/j.strusafe.2009.06.010.
  • Takewaki, I. 1997. Optimal damper placement for minimum transfer functions. Earthquake Engineering & Structural Dynamics 26 (11):1113–24. doi:10.1002/(SICI)1096-9845(199711)26:11<1113:AID-EQE696>3.0.CO;2-X.
  • Vamvatsikos, D., and C. Allin Cornell. 2002. Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics 31 (3):491–514. doi:10.1002/eqe.141.
  • Wen, Y.-K., and Y. J. Kang. 2001. Minimum building life-cycle cost design criteria. I: Methodology. Journal of Structural Engineering 127 (3):330–37. doi:10.1061/(ASCE)0733-9445(2001)127:3(330).
  • Wong, K. K. F. 2011. Seismic energy analysis of structures with nonlinear fluid viscous dampers—algorithm and numerical verification. The Structural Design of Tall & Special Buildings 20 (4):482–96. doi:10.1002/tal.602.
  • Wongprasert, N., and M. D. Symans. 2004. Application of a genetic algorithm for optimal damper distribution within the nonlinear seismic benchmark building. Journal of Engineering Mechanics 130 (4):401–06. doi:10.1061/(ASCE)0733-9399(2004)130:4(401).
  • Yang, T. Y., J. Moehle, B. Stojadinovic, and A. Der Kiureghian. 2009. Seismic performance evaluation of facilities: Methodology and implementation. Journal of Structural Engineering 135 (10):1146–54. doi:10.1061/(ASCE)0733-9445(2009)135:10(1146).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.