683
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Application of the Εxtended KDamper to the Seismic Protection of Bridges: Design Optimization, Nonlinear Response, SSI and Pounding Effects

, , & ORCID Icon
Pages 1709-1743 | Received 24 Aug 2022, Accepted 16 Aug 2023, Published online: 05 Sep 2023

References

  • Alfarah, B., F. López-Almansa, and S. Oller. 2017. New methodology for calculating damage variables evolution in plastic damage model for RC structures. Engineering Structures, Elsevier Ltd 132:70–86. doi:10.1016/j.engstruct.2016.11.022.
  • Anastasopoulos, I., P. C. Anastasopoulos, A. Agalianos, and L. Sakellariadis. 2015. Simple method for real-time seismic damage assessment of bridges. Soil Dynamics and Earthquake Engineering 78:201–12. doi:10.1016/j.soildyn.2015.07.005.
  • Anastasopoulos, I., F. Gelagoti, R. Kourkoulis, and G. Gazetas. 2011. Simplified constitutive model for simulation of cyclic response of shallow foundations: Validation against laboratory tests. Journal of Geotechnical and Geoenvironmental Engineering 137 (12):1154–68. doi:10.1061/(ASCE)GT.1943-5606.0000534.
  • Antoniadis, I. A., S. A. Kanarachos, K. Gryllias, and I. E. Sapountzakis. 2016. Kdamping: A stiffness based vibration absorption concept. Journal of Vibration and Control 24 (3):588–606. doi:10.1177/1077546316646514.
  • Antoniadis, I. A., K. A. Kapasakalis, and E. J. Sapountzakis. 2019. Advanced negative stiffness absorbers for the seismic protection of structures. doi:10.1063/1.5123704.
  • Antoniou, M., N. Nikitas, I. Anastasopoulos, and R. Fuentes. 2020. Scaling laws for shaking table testing of reinforced concrete tunnels accounting for post-cracking lining response. Tunnelling and Underground Space Technology 101:103353. doi:10.1016/j.tust.2020.103353.
  • Arias, A. 1970. Measure of earthquake intensity. Santiago de Chile: Massachusetts Inst. of Tech., Cambridge. Univ. of Chile.
  • Attary, N., M. Symans, and S. Nagarajaiah. 2017. Development of a rotation-based negative stiffness device for seismic protection of structures. Journal of Vibration and Control 23 (5):853–67. doi:10.1177/1077546315585435.
  • Attary, N., M. Symans, S. Nagarajaiah, A. M. Reinhorn, M. C. Constantinou, A. A. Sarlis, D. T. R. Pasala, and D. Taylor. 2015a. Numerical simulations of a highway bridge structure employing passive negative stiffness device for seismic protection. Earthquake Engineering and Structural Dynamics 44 (6):973–95. doi:https://doi.org/10.1002/eqe.2495.
  • Attary, N., M. Symans, S. Nagarajaiah, A. M. Reinhorn, M. C. Constantinou, A. A. Sarlis, D. T. R. Pasala, and D. Taylor. 2015b. Performance evaluation of negative stiffness devices for seismic response control of bridge structures via experimental shake table tests. Journal of Earthquake Engineering 19 (2):249–76. doi:10.1080/13632469.2014.962672.
  • Attary, N., M. Symans, S. Nagarajaiah, A. M. Reinhorn, M. C. Constantinou, A. A. Sarlis, D. T. R. Pasala, and D. P. Taylor. 2015. Experimental shake table testing of an adaptive passive negative stiffness device within a highway bridge model. Earthquake Spectra 31 (4):2163–94. doi:10.1193/101913EQS273M.
  • Behnam, H., J. S. Kuang, and B. Samali. 2018. Parametric finite element analysis of RC wide beam-column connections. Computers and Structures 205:28–44. doi:10.1016/j.compstruc.2018.04.004.
  • Bhuiyan, A. R., and M. S. Alam. 2013. Seismic performance assessment of highway bridges equipped with superelastic shape memory alloy-based laminated rubber isolation bearing. Engineering Structures 49:396–407. doi:10.1016/j.engstruct.2012.11.022.
  • Bollano, P. O. N., K. A. Kapasakalis, and A. I. Antoniadis. 2021. Design and Optimization of the KDamper Concept for Seismic Protection of Bridges. In Sapountzakis Evangelos J. and Banerjee (ed.), Proceedings of the 14th International Conference on Vibration Problems (ICOVP 2019), 193–215. Crete, Greece: Springer Singapore.
  • Cain, T. M. N., P. S. Harvey, and K. K. Walsh. 2020. Modeling, characterizing, and testing a simple, smooth negative-stiffness device to achieve apparent weakening. Journal of Engineering Mechanics 146 (10). doi:10.1061/(ASCE)EM.1943-7889.0001823.
  • Caltrans. 1990. Caltrans structures seismic design references, first ed. Sacramento, CA: California Department of Transportation.
  • Caltrans. 1999. Caltrans seismic design criteria, first ed. Sacramento, CA: California Department of Transportation.
  • Chang, G. A., and J. B. Mander. 1994. Seismic energy based fatigue damage analysis of bridge columns: evaluation of seismic capacity. Buffalo, NY: National Center for Earthquake Engineering Research.
  • Cheng, C., S. Li, Y. Wang, and X. Jiang. 2016. On the analysis of a high-static-low-dynamic stiffness vibration isolator with time-delayed cubic displacement feedback. Journal of Sound and Vibration 378:76–91. doi:10.1016/j.jsv.2016.05.029.
  • Choi, E. 2002. Seismic analysis and retrofit of mid-America bridges . Atlanta, GA: Georgia Institute of Technology.
  • Dai, J., Z. D. Xu, and P. P. Gai. 2019. Dynamic analysis of viscoelastic tuned mass damper system under harmonic excitation. JVC/Journal of Vibration and Control 25 (11):1768–79. doi:10.1177/1077546319833887.
  • Dassault Systemes. 2013. Abaqus version 6.13 [Software]. Dassault Systèmes Simulia Corp. Providence, RI, USA.
  • De Domenico, D., and G. Ricciardi. 2018. An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI). Earthquake Engineering & Structural Dynamics 47 (5):1169–92. doi:10.1002/eqe.3011.
  • Dobry, R., and G. Gazetas. 1988. Simple method for dynamic stiffness and damping of floating pile groups. Geotechnique 38 (4):557–74. doi:10.1680/geot.1988.38.4.557.
  • Dong, Q., and S. Cheng. 2021. Impact of damper stiffness and damper support stiffness on the performance of a negative stiffness damper in mitigating cable vibrations. Journal of Bridge Engineering 26 (3). doi:10.1061/(ASCE)BE.1943-5592.0001683.
  • EC8. 2005. Eurocode 8: Design of structures for earthquake resistance – Part 2: Bridges. EN 1998-2.
  • Emami, F., and M. Tayefeh Mohammad Ali. 2022. Evaluation of seismic response of the straight concrete bridges with three methods of passive control (K-damper, TMD and LRB). Journal of Structural & Construction Engineering 8 (Special Issue 4): 46–60.
  • Enidine. 2022. Seismic products catalog. https://www.enidine.com/en-US/Products/Viscous-Dampers/.
  • Frahm, H. 1909. Device for damping vibrations of bodies.
  • Garrido, H., O. Curadelli, and D. Ambrosini. 2013. Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper. Engineering Structures 56:2149–2153. doi:10.1016/j.engstruct.2013.08.044.
  • Geem, Z. W., Kim, J. H. and Loganathan, G. (2001). A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION, 76 (2): 60–68. doi:10.1177/003754970107600201.
  • Giannakos, S., N. Gerolymos, and G. Gazetas. 2012. Cyclic lateral response of piles in dry sand: Finite element modeling and validation. Computers and Geotechnics 44:116–31. doi:10.1016/j.compgeo.2012.03.013.
  • Giaralis, A., and L. Marian. 2016. Use of inerter devices for weight reduction of tuned mass-dampers for seismic protection of multi-story building: The tuned mass-damper-interter (TMDI). Active and Passive Smart Structures and Integrated Systems 2016 9799. doi:10.1117/12.2219324.
  • Hoang N, Fujino Y and Warnitchai P. (2008). Optimal tuned mass damper for seismic applications and practical design formulas. Engineering Structures, 30 (3): 707–715. doi:10.1016/j.engstruct.2007.05.007.
  • Iemura, H., and M. H. Pradono. 2002. Passive and semi-active seismic response control of a cable-stayed bridge. Journal of Structural Control 9 (3):189–204. doi:10.1002/stc.12.
  • Kampitsis, A., K. Kapasakalis, and L. Via-Estrem. 2022. An integrated FEA-CFD simulation of offshore wind turbines with vibration control systems. Engineering Structures 254:113859. doi:10.1016/j.engstruct.2022.113859.
  • Kapasakalis, K. A., I. A. Antoniadis, and E. J. Sapountzakis. 2019. Control of multi storey building structures with a new passive vibration control system combining base isolation with KDamper. In Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2019), Crete, Greece.
  • Kapasakalis, K. A., I. A. Antoniadis, and E. J. Sapountzakis. 2021. Constrained optimal design of seismic base absorbers based on an extended KDamper concept. Engineering Structures 226:111312. doi:10.1016/J.ENGSTRUCT.2020.111312.
  • Kapasakalis, K. A., E. I. Sapountzakis, and I. A. Antoniadis. 2017. Implementation of the KDamper concept to wind turbine towers. COMPDYN 2017 - Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 1. doi:10.7712/120117.5409.17866.
  • Kelly, J. M. 1997. Earthquake – resistant design with rubber, 2nd ed. London: Springer. doi:10.1007/978-1-4471-0971-6.
  • Kunde, M. C., and R. S. Jangid. 2006. Effects of pier and deck flexibility on the seismic response of isolated bridges. Journal of Bridge Engineering 11 (1):109–21. doi:10.1061/(ASCE)1084-0702(2006)11:1(109).
  • Lazar, I. F., S. A. Neild, and D. J. Wagg. 2014. Using an inerter-based device for structural vibration suppression. Earthquake Engineering and Structural Dynamics 43 (8):1129–47. doi:10.1002/eqe.2390.
  • Lee, J., and G. L. Fenves. 1998. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics 124 (8):892–900. doi:10.1061/(ASCE)0733-9399(1998)124:8(892).
  • Li, H.-N., T. Sun, Z. Lai, and S. Nagarajaiah. 2018. Effectiveness of negative stiffness system in the benchmark structural-control problem for seismically excited highway bridges. Journal of Bridge Engineering 23 (3): 23(3. doi:10.1061/(ASCE)BE.1943-5592.0001136.
  • Lubliner, J., J. Oliver, S. Oller, and E. Onate. 1989. A plastic-damage model for concrete. International Journal of Solids and Structures 25 (3):299–326. doi:10.1016/0020-7683(89)90050-4.
  • Makris, N. 2019. Seismic isolation: Early history. Earthquake Engineering & Structural Dynamics 48 (2):269–83. doi:10.1002/eqe.3124.
  • Mantakas, A. G., K. A. Kapasakalis, A. E. Alvertos, I. A. Antoniadis, and E. J. Sapountzakis. 2022. A negative stiffness dynamic base absorber for seismic retrofitting of residential buildings. Structural Control and Health Monitoring 29 (12):e3127. doi:10.1002/stc.3127.
  • Maroney, B., K. Romstad, and B. Kutter. 1993. Experimental testing of laterally loaded large scale bridge abutments. In Structural engineering in natural hazards mitigation, 1065–70. Irvine, CA: ASCE.
  • Matin A, Elias S and Matsagar V. (2020). Distributed multiple tuned mass dampers for seismic response control in bridges. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 173 (3): 217–234. doi:10.1680/jstbu.18.00067.
  • Matsagar, V. A., and R. S. Jangid. 2006. Seismic response of simply supported base-isolated bridge with different isolators. International Journal of Applied Science and Engineering 4 (4):53–69.
  • Mitchell, D., M. Bruneau, M. Saatcioglu, M. Williams, D. Anderson, and R. Sexsmith. 1995. Performance of bridges in the 1994 Northridge earthquake. Canadian Journal of Civil Engineering 22 (2):415–27. doi:10.1139/l95-050.
  • Mizuno, T., M. Murashita, M. Takasaki, and Y. Ishino. 2005. Pneumatic three-axis vibration isolation system using negative stiffness. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC ’05, 2005. doi:10.1109/CDC.2005.1583498.
  • Molyneaux, W. G. 1957. Supports for vibration isolation. London, UK: Aeronautical Research Council.
  • Nielson, B. G. 2005. Analytical fragility curves for highway bridges in moderate seismic zones. . Atlanta, GA: Georgia Institute of Technology.
  • Nigdeli, S. M., and G. Bekdaş. 2017. Optimum tuned mass damper design in frequency domain for structures. KSCE Journal of Civil Engineering 21 (3):912–22. doi:10.1007/s12205-016-0829-2.
  • Papadimitriou, C., L. S. Katafygiotis, and S.-K. Au. 1997. Effects of structural uncertainties on TMD design: A reliability-based approach. Journal of Structural Control 4 (1):65–88. doi:10.1002/stc.4300040108.
  • Pasala, D. T. R., A. A. Sarlis, S. Nagarajaiah, A. M. Reinhorn, M. C. Constantinou, and D. Taylor. 2013. Adaptive negative stiffness: New structural modification approach for seismic protection. Journal of Structural Engineering 139 (7):1112–23. doi:10.1061/(ASCE)ST.1943-541X.0000615.
  • Platus, D. L. 1999. Negative-stiffness-mechanism vibration isolation systems. In Optomechanical engineering and vibration control, ed. E. A. Derby, D. Vukobratovich, C. H. Zweben, E. A. Derby, C. G. Gordon, D. Vukobratovich, C. H. Zweben, and C. G. Gordon, Vol. 3786, 98–105. SPIE. doi:10.1117/12.363841.
  • Rahimi, F., R. Aghayari, and B. Samali. 2020. Application of tuned mass dampers for structural vibration control: A state-of-the-art review. Civil Engineering Journal (Iran) 6 (8):1622–51. doi:10.28991/cej-2020-03091571.
  • Saaed, T. E., G. Nikolakopoulos, J.-E. Jonasson, and H. Hedlund. 2015. A state-of-the-art review of structural control systems. Journal of Vibration and Control 21 (5):919–37. doi:10.1177/1077546313478294.
  • Sakellariadis, L., I. Anastasopoulos, and G. Gazetas. 2020. Fukae bridge collapse (Kobe 1995) revisited: New insights. Soils and Foundations 60 (6):1450–67. doi:10.1016/j.sandf.2020.09.005.
  • Sapountzakis, E. J., P. G. Syrimi, I. A. Pantazis, and I. A. Antoniadis. 2017. Kdamper concept in seismic isolation of bridges with flexible piers. Engineering Structures 153:525–39. doi:10.1016/J.ENGSTRUCT.2017.10.044.
  • Sapountzakis, I. E., P. G. Tranakidis, and I. A. Antoniadis. 2019. Implementation of the KDamper concept using disc springs. Journal of Low Frequency Noise, Vibration and Active Control 38 (1):168–86. doi:10.1177/1461348418812318.
  • Sarlis, A. A., D. T. R. Pasala, M. C. Constantinou, A. M. Reinhorn, S. Nagarajaiah, and D. P. Taylor. 2013. Negative stiffness device for seismic protection of structures. Journal of Structural Engineering 139 (7):1124–33. doi:10.1061/(ASCE)ST.1943-541X.0000616.
  • Seismosoft. 2020. SeismoMatch - A computer program for spectrum matching of earthquake records. www.seismosoft.com.
  • SIMULIA. 2014. Abaqus documentation (6.14). Providence, RI, USA: Dassault Systèmes Simulia Corp.
  • Stǎncioiu, D., and H. Ouyang. 2012. Structural modification formula and iterative design method using multiple tuned mass dampers for structures subjected to moving loads. Mechanical Systems and Signal Processing 28:542–560. doi:10.1016/j.ymssp.2011.11.009.
  • van Eijk, J., and J. F. Dijksman. 1979. Plate spring mechanism with constant negative stiffness. Mechanism and Machine Theory 14 (1):1–9. doi:10.1016/0094-114X(79)90036-3.
  • Walsh, K. K. 2018. Passive displacement-dependent damper with adjustable stiffness for seismic protection of civil infrastructure. 11th National Conference on Earthquake Engineering 2018, NCEE 2018: Integrating Science, Engineering, and Policy, Los Angeles, California, 3.
  • Wang, Z., and G. C. Lee. 2009. A comparative study of bridge damage due to the Wenchuan, Northridge, Loma Prieta and San Fernando earthquakes. Earthquake Engineering and Engineering Vibration 8 (2):251–61. doi:10.1007/s11803-009-9063-y.
  • Winterflood, J., D. G. Blair, and B. Slagmolen. 2002. High performance vibration isolation using springs in Euler column buckling mode. Physics Letters, Section A: General, Atomic and Solid State Physics 300 (2–3):122–30. doi:10.1016/S0375-9601(02)00258-X.
  • Xu, K., K. Bi, Y. Ge, L. Zhao, Q. Han, and X. Du. 2020. Performance evaluation of inerter-based dampers for vortex-induced vibration control of long-span bridges: A comparative study. Structural Control and Health Monitoring 27 (6). doi:10.1002/stc.2529.
  • Zafeirakos, A., N. Gerolymos, and V. Drosos. 2013. Incremental dynamic analysis of caisson–pier interaction. Soil Dynamics and Earthquake Engineering 48:71–88. doi:10.1016/j.soildyn.2013.01.021.
  • Zeng, Y., P. Pan, and Y. Guo. 2021. Development of distributed tunable friction pendulum system (DTFPS) for semi-active control of base-isolated buildings. Bulletin of Earthquake Engineering 19 (14):6243–68. doi:10.1007/s10518-021-01201-1.
  • Zhou, J., X. Wang, D. Xu, and S. Bishop. 2015. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. Journal of Sound and Vibration 346 (1):53–69. doi:10.1016/j.jsv.2015.02.005.
  • Zoubek, B., T. Isakovic, Y. Fahjan, and M. Fischinger. 2013. Cyclic failure analysis of the beam-to-column dowel connections in precast industrial buildings. Engineering Structures 52:179–91. doi:10.1016/j.engstruct.2013.02.028.