218
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Time Domain Nonlinear Fluid–Structure–Soil Interaction Analysis of Rectangular Water Storage Tanks Using Coupled Eulerian–Lagrangian (CEL) Formulation and Direct Method

, , &
Pages 1744-1768 | Received 13 Oct 2022, Accepted 18 Aug 2023, Published online: 07 Sep 2023

References

  • Ali Goudarzi, M., and S. Reza Sabbagh-Yazdi. 2012. Investigation of nonlinear sloshing effects in seismically excited tanks. Soil Dynamics and Earthquake Engineering 43:355–65. doi:10.1016/j.soildyn.2012.08.001.
  • Babu, S. S., and S. K. Bhattacharyya. 1996. Finite element analysis of fluid-structure interaction effect on liquid retaining structures due to sloshing. Computers & Structures 59 (6):1165–71. doi:10.1016/0045-7949(95)00271-5.
  • Benson, D. J. 1992. Computational methods in Lagrangian Eulerian hydrocodes. Computer Methods in Applied Mechanics and Engineering 99 (2–3):235–394. doi:10.1016/0045-7825(92)90042-I.
  • Bielak, J., K. Loukakis, Y. Hisada, and C. Yoshimura. 2003. Domain reduction method for three-dimensional earthquake modeling in localised regions, part I: Theory. Bulletin of the Seismological Society of America 93 (2):817–24. doi:10.1785/0120010251.
  • Borja, R. I., W.-H. Wu, A. P. Amies, and H. A. Smith. 1994. Nonlinear lateral, rocking, and torsional vibration of rigid foundations. Journal of Geotechnical Engineering 120 (3):491–513. doi:10.1061/(ASCE)0733-9410(1994)120:3(491).
  • Chen, W., M. A. Haroun, and F. Liu. 1996. Large amplitude liquid sloshing in seismically excited tanks. Earthquake Engineering & Structural Dynamics 25:653–69. doi:10.1002/(SICI)1096-9845(199607)25:7<653:AID-EQE513>3.0.CO;2-H.
  • Chouw, N. 2008. Unequal soil-structure interaction effect on seismic response of structure. Proceeding 18th New Zeal. Geotech. Soc. Geotech. Symp. Soil-Structure Interact. Rules Thumb to Real, Auckland, 214–19.
  • Comodromos, E. M., and M. C. Papadopoulou. 2012. Response evaluation of horizontally loaded pile groups in clayey soils. Géotechnique 62 (4):329–39. doi:10.1680/geot.10.P.045.
  • Das, B. M. 1983. Fundamentals of soil dynamics. New York: Elsevier.
  • Faltinsen, O. M., O. F. Rognebakke, I. A. Lukovsky, and A. N. Timokha. 2000. Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. Journal of Fluid Mechanics 407:201–34. doi:10.1017/S0022112099007569.
  • Fatahi, B., and S. H. R. Tabatabaiefar. 2014. Fully nonlinear versus equivalent linear computation method for seismic analysis of midrise buildings on soft soils. International Journal of Geomechanics 14 (4):4014016. doi:10.1061/(ASCE)GM.1943-5622.0000354.
  • Fatahi, B., Q. Van Nguyen, R. Xu, and W. Sun. 2018. Three-dimensional response of neighboring buildings sitting on pile foundations to seismic pounding. International Journal of Geomechanics 18 (4):04018007. doi:10.1061/(asce)gm.1943-5622.0001093.
  • Ghanbari, A., and P. Abbasi Maedeh. 2015. Dynamic behaviour of ground-supported tanks considering fluid-soil-structure interaction (Case study: Southern parts of Tehran. Pollution 1:103–16.
  • Hashemi, S., M. M. Saadatpour, and M. R. Kianoush. 2013. Dynamic behavior of flexible rectangular fluid containers. Thin-Walled Structures 66:23–38. doi:10.1016/j.tws.2013.02.001.
  • Higdon, R. L. 1990. Radiation boundary conditions for elastic wave propagation. SIAM Journal on Numerical Analysis 27 (4):831–69. doi:10.1137/0727049.
  • Hirt, C. W., and B. D. Nichols. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39 (1):201–25. doi:10.1016/0021-9991(81)90145-5.
  • Hoskins, L. M., and L. S. Jacobsen. 1934. Water pressure in a tank caused by a simulated earthquake. Bulletin of the Seismological Society of America 24 (1):1–32. doi:10.1785/BSSA0240010001.
  • Ibrahim, R. A., V. N. Pilipchuk, and T. Ikeda. 2001. Recent advances in liquid sloshing dynamics. Applied Mechanics Reviews 54 (2):133–99. doi:10.1115/1.3097293.
  • Kianoush, M. R., and A. R. Ghaemmaghami. 2011. The effect of earthquake frequency content on the seismic behavior of concrete rectangular liquid tanks using the finite element method incorporating soil–structure interaction. Engineering Structures 33 (7):2186–200. doi:10.1016/j.engstruct.2011.03.009.
  • Kouroussis, G., O. Verlinden, and C. Conti. 2009. Ground propagation of vibrations from railway vehicles using a finite/infinite-element model of the soil. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail & Rapid Transit 223 (4):405–13. doi:10.1243/09544097JRRT253.
  • Kramer, S. L. 1996. Geotechnical earthquake engineering. New Jersey: Prentice Hall Upper Saddle River.
  • Larkin, T. 2008. Seismic response of liquid storage tanks incorporating soil structure interaction. Journal of Geotechnical and Geoenvironmental Engineering 134 (12):1804–14. doi:10.1061/(ASCE)1090-0241(2008)134:12(1804).
  • Liu, D., and P. Lin. 2008. A numerical study of three-dimensional liquid sloshing in tanks. Journal of Computational Physics 227 (8):3921–39. doi:10.1016/j.jcp.2007.12.006.
  • Livaoglu, R. 2008. Investigation of seismic behavior of fluid–rectangular tank–soil/foundation systems in frequency domain. Soil Dynamics and Earthquake Engineering 28 (2):132–46. doi:10.1016/j.soildyn.2007.05.005.
  • Livaoglu, R., and A. Dogangun. 2007. Effect of foundation embedment on seismic behavior of elevated tanks considering fluid–structure-soil interaction. Soil Dynamics and Earthquake Engineering 27 (9):855–63. doi:10.1016/j.soildyn.2007.01.008.
  • Luo, C., X. Yang, C. Zhan, X. Jin, and Z. Ding. 2016. Nonlinear 3D finite element analysis of soil–pile–structure interaction system subjected to horizontal earthquake excitation. Soil Dynamics and Earthquake Engineering 84:145–56. doi:10.1016/j.soildyn.2016.02.005.
  • Lysmer, J., and R. L. Kuhlemeyer. 1969. Finite dynamic model for infinite media. Journal of the Engineering Mechanics Division 95 (4):859–77. doi:10.1061/JMCEA3.0001144.
  • Maedeh, P. A., A. Ghanbari, and W. Wu. 2017. Investigation of soil structure interaction and wall flexibility effects on natural sloshing frequency of vessels. Civil Engineering Journal 3 (1):45–56. doi:10.28991/cej-2017-00000071.
  • Maheshwari, B. K., K. Z. Truman, M. H. El Naggar, and P. L. Gould. 2004. Three-dimensional nonlinear analysis for seismic soil–pile-structure interaction. Soil Dynamics and Earthquake Engineering 24 (4):343–56. doi:10.1016/j.soildyn.2004.01.001.
  • Meng, X., X. Li, X. Xu, J. Zhang, W. Zhou, and D. Zhou. 2019. Earthquake response of cylindrical storage tanks on an elastic soil. Journal of Vibration Engineering & Technologies 7 (5):433–44. doi:10.1007/s42417-019-00141-0.
  • Nielsen, A. H. 2008. Boundary Conditions for Seismic Analysis. Seismic Analysis Using Finite Elem 21:7–11.
  • Nielsen, A. H. 2014. Towards a complete framework for seismic analysis in Abaqus. Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics 167 (1):3–12. doi:10.1680/eacm.12.00004.
  • Ohayon, R., and R. Ibrahim. 2005. Liquid sloshing dynamics: Theory and applications. Cambridge: Cambridge University Press. ISBN 0-521-83885-1 pp. xxi+ 948,£ 160, US $275, hbk., J. Sound Vib. 315 (2008) 365–366.
  • Ormeño, M., T. Larkin, and N. Chouw. 2019. Experimental study of the effect of a flexible base on the seismic response of a liquid storage tank. Thin-Walled Structures 139:334–46. doi:10.1016/j.tws.2019.03.013.
  • Park, D., and Y. M. A. Hashash. 2004. Soil damping formulation in nonlinear time domain site response analysis. Journal of Earthquake Engineering 8 (2):249–74. doi:10.1142/S1363246904001420.
  • Rawat, A., V. Mittal, T. Chakraborty, and V. Matsagar. 2019. Earthquake induced sloshing and hydrodynamic pressures in rigid liquid storage tanks analysed by coupled acoustic-structural and Euler-Lagrange methods. Thin-Walled Structures 134:333–46. doi:10.1016/j.tws.2018.10.016.
  • Rayleigh, J. W. S., and R. B. Lindsay. 1945. The theory of sound, 1st American ed., New York: Dover Publications.
  • Rebouillat, S., and D. Liksonov. 2010. Fluid–structure interaction in partially filled liquid containers: A comparative review of numerical approaches. Computers & Fluids 39 (5):739–46. doi:10.1016/j.compfluid.2009.12.010.
  • Tippmann, J. D., S. C. Prasad, and P. N. Shah. 2009. SIMULIA Customer Conference: Conference Proceedings: May 18-21, 2009, London, England. 2-D tank sloshing using the Coupled Eulerian- LaGrangian (CEL) capability of Abaqus/Explicit, 1–11 2009. London, England: DS SIMULIA, 2009.
  • Van Nguyen, Q., B. Fatahi, and A. S. Hokmabadi. 2016. The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction. Structural Engineering and Mechanics 58 (6):1045–75. doi:10.12989/sem.2016.58.6.1045.
  • Veletsos, A. S. 1984. Seismic response and design of liquid storage tanks. Guidelines for the Seismic Design of Oil and Gas Pipeline Systems, 255–370. New York: ASCE.
  • Veletsos, A. S., and J. W. Meek. 1974. Dynamic behaviour of building‐foundation systems. Earthquake Engineering & Structural Dynamics 3 (2):121–38. doi:10.1002/eqe.4290030203.
  • Veletsos, A. S., and Y. Tang. 1990. Soil‐structure interaction effects for laterally excited liquid storage tanks. Earthquake Engineering & Structural Dynamics 19 (4):473–96. doi:10.1002/eqe.4290190402.
  • Virella, J. C., C. A. Prato, and L. A. Godoy. 2008. Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions. Journal of Sound and Vibration 312 (3):442–60. doi:10.1016/j.jsv.2007.07.088.
  • Wolf, J. P. 1989. Soil-structure-interaction analysis in time domain. Nuclear Engineering & Design 111 (3):381–93. doi:10.1016/0029-5493(89)90249-5.
  • Yang, Y. B., and H. H. Hung. 2009. Soil vibrations caused by underground moving trains, wave propag. Train-Induced Vibrations 407–49. doi:10.1142/9789812835833_0010.
  • Ying, L., X. Meng, D. Zhou, X. Xu, J. Zhang, and X. Li. 2019. Sloshing of fluid in a baffled rectangular aqueduct considering soil-structure interaction. Soil Dynamics and Earthquake Engineering 122:132–47. doi:10.1016/j.soildyn.2019.04.008.
  • Zhang, W., E. E. Seylabi, and E. Taciroglu. 2019. An ABAQUS toolbox for soil-structure interaction analysis. Computers and Geotechnics 114:103143. doi:10.1016/j.compgeo.2019.103143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.