129
Views
0
CrossRef citations to date
0
Altmetric
Research article

Numerical simulation of VAR for large-scale TC4 alloy during the solidification process

, , ORCID Icon, &
Pages 1-11 | Received 01 Aug 2023, Accepted 10 Nov 2023, Published online: 27 Nov 2023

References

  • Suzuki K. An introduction to the extraction, melting and casting technologies of titanium alloys. Met Mater Int. 2001;7(6):587–604. doi: 10.1007/BF03179258
  • Gao L, Huang HG, Kratzsch C, et al. Numerical study of aluminum segregation during electron beam cold hearth melting for large-scale Ti-6 wt%Al-4 wt%V alloy slab ingots. Int J Heat Mass Transf. 2020;147:118976. doi: 10.1016/j.ijheatmasstransfer.2019.118976
  • Yang ZH, Kou HC, Zhao XH, et al. Effect of remelting current on molten pool profile of titanium alloy ingot during vacuum arc remelting process. J Shanghai Jiaotong Univ ((Sci). 2011;16(2):133–136. doi: 10.1007/s12204-011-1107-6
  • Wang X, Barratt M, Ward RM, et al. The effect of VAR process parameters on white spot formation in INCONEL1718. J Mater Sci. 2004;39(24):7169–7174. doi: 10.1023/B:JMSC.0000048728.85832.44
  • Donachie MJ. Titanium: a technical guide. ASM Int. 2000;14:225–233.
  • Mitchell A. Melting, casting and forging problems in titanium alloys. JOM. 1997;49(6):40–42. doi: 10.1007/BF02914712
  • Liu Q, Li X, Jiang Y. Numerical simulation of EBCHM for the large-scale TC4 alloy slab ingot during the solidification process. Vacuum. 2017;141:1–9. doi: 10.1016/j.vacuum.2017.03.009
  • Gao L, Huang H, Jiang Y, et al. Numerical study on the solid–liquid interface evolution of large-scale titanium alloy ingots during high energy consumption electron beam cold hearth melting. JOM. 2020;72(5):1953–1960. doi: 10.1007/s11837-020-04089-5
  • Zhifeng N, Yangmin Z, Jiushuai D, et al. Thermal and electrical behavior of silicon rod with varying radius in a 24-rod Siemens reactor considering skin effect and wall emissivity. Int J Heat Mass Transf. 2017;111:1142–1156. doi: 10.1016/j.ijheatmasstransfer.2017.04.095
  • Shevchenko DM, Ward RM. Liquid metal pool behavior during the vacuum arc remelting of INCONEL 718. Metall Mater Trans B. 2009;40(3):263–270. doi: 10.1007/s11663-008-9206-y
  • Kermanpur A, Lee PD, Mclean M, et al. Integrated modeling for the manufacture of aerospace discs: Grain structure evolution. JOM. 2004;56(3):72–78. doi: 10.1007/s11837-004-0040-7
  • Spitans S, Franz H, Scholz H, et al. Numerical simulation of the ingot growth during the vacuum arc remelting (VAR) process. XVIII International UIE-Congress Electrotechnologies For Material Processing. 2017;53:557–569.
  • Han J, Ren N, Zhou Y, et al. Melt convection and macrosegregation in the vacuum arc remelted Ti2AlNb ingot: Numerical methods and experimental verification. J Mater Process Technol. 2022;308:117729. doi: 10.1016/j.jmatprotec.2022.117729
  • Li J, Xu XW, Ren N, et al. A review on prediction of casting defects in steel ingots: from macrosegregation to multi-defect model. J Iron Steel Res Int. 2022;29(12):1901–1914. doi: 10.1007/s42243-022-00848-7
  • Fox S, Patel A, Tripp D, et al. Recent Developments in Melting and Casting Technologies for Titanium Alloys, Proceedings of the 13th World Conference on Titanium. 2016;54:347–358. doi: 10.1002/9781119296126.ch54
  • Mir HE, Jardy A, Bellot JP, et al. Thermal behaviour of the consumable electrode in the vacuum arc remelting process. J Mater Process Technol. 2010;210(3):564–572. doi: 10.1016/j.jmatprotec.2009.11.008
  • Beaman JJ, Lopez LF, Williamson RL. Modeling of the vacuum arc remelting process for estimation and control of the liquid pool profile. J Dyn Syst Meas Control. 2015;136(3):031007. doi: 10.1115/1.4026319
  • Kou H, Zhang Y, Li P, et al. Numerical simulation of titanium alloy ingot solidification structure during VAR process based on three-dimensional CAFE method. Rare Metal Mater Eng. 2014;43(7):1537–1542. doi: 10.1016/S1875-5372(14)60120-X
  • Nastac L, Sundarraj S, Yu KO. Stochastic modeling of solidification structure in alloy 718 remelt ingots. JOM. 1998;50(3):30–35. doi: 10.1007/s11837-998-0376-5
  • Karimi-Sibaki E, Kharicha A, Abdi M, et al. A numerical study on the influence of an axial magnetic field (AMF) on vacuum arc remelting (Var)process. Metall Mater Trans B. 2021;52(p):3354–3362. doi: 10.1007/s11663-021-02264-w
  • Huang YS, Yang MS, Li JS, et al. Vacuum arc remelting process of high-alloy bearing steel and multi-scale control of solidification structure, materials science forum. Mater Sc Forum. 2015;817:826–836. doi: 10.4028/www.scientific.net/MSF.817.826
  • Bhar R, Jardy A, Chapelle P, et al. 3D Numerical simulation of the var consumable electrode melting process. Metall Mater Trans B. 2020;51:2492–2503. doi: 10.1007/s11663-020-01966-x
  • Gandin R. Probabilistic modelling of microstructure formation in solidification processes. Acta Mater. 1993;41(2):345–360. doi: 10.1016/0956-7151(93)90065-Z
  • Atwood RC, Lee PD, Minisandram RS, et al. Multiscale modelling of microstructure formation during vacuum arc remelting of titanium 6-4. J Mater Sci. 2004;39(24):7193–7197. doi: 10.1023/B:JMSC.0000048731.42495.1c
  • Wang JL, Wang FM, Zhao YY, et al. Numerical simulation of 3D-microstructures in solidification processes based on the CAFE method. Int J Min Met Mater. 2009;16:640.
  • Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification. Acta Mater. 1986;34(5):823–830. doi: 10.1016/0001-6160(86)90056-8
  • Kondrashov EN, Musatov MI, Maksimov AY, et al. Calculation of the molten pool depth in vacuum arc remelting of alloy Vt3-1. J Eng Thermophys. 2007;16(1):19–25. doi: 10.1134/S1810232807010031
  • Shuster RE. Modeling of aluminum evaporation during electron beam cold hearth melting of titanium alloy ingots. University of British Columbia; 2013. http://hdl.handle.net/2429/44553
  • Chapelle P, Ward RM, Jardy A, et al. Lateral boundary conditions for heat transfer and electrical Current flow during vacuum arc remelting of a zirconium alloy. Metall Mater Trans B. 2008;40(3):254–262. doi: 10.1007/s11663-008-9187-x
  • Liu FB, Chen X, Jiang ZH, et al. Numerical simulation of solidification structure during electroslag remelting casting of ZG06Cr13Ni4Mo ingot based on CAFE and moving boundary method. Ironmak Steelmak. 2016;43(5):385–393. doi: 10.1080/03019233.2015.1104071
  • Koleva E, Vutova K, Mladenov G. The role of ingot–crucible thermal contact in mathematical modelling of the heat transfer during electron beam melting. Vacuum. 2001;62(2–3):189–196. doi: 10.1016/S0042-207X(00)00437-1
  • Luo HJ, Jie WQ, Gao ZM, et al. Numerical simulation for macrosegregation in direct-chill casting of 2024 aluminum alloy with an extended continuum mixture model. Trans Nonferrous Met Soc China. 2018;28(5):1007–1015. doi: 10.1016/S1003-6326(18)64738-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.