131
Views
1
CrossRef citations to date
0
Altmetric
Research article

Evolution of the surface quality and tool wear in the high speed turning of Al2219/n-B4C/MoS2 Nano metal matrix composites

, ORCID Icon, , &
Pages 22-38 | Received 06 Aug 2023, Accepted 10 Nov 2023, Published online: 30 Nov 2023

References

  • Satheesh J, Tajamul P, Madhusudhan TH. Optimal machining conditions for turning of Al SiC metal matrix composites using ANOVA. Int J Innov Res Technol Sci Eng. 2013;2(11):61–71.
  • ViratKhanna V, Kumar V, Bansal SA, Bansal SA. Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: advancement, opportunities and perspective. Mater Res Bull. 2021;138(111224):1–19. doi: 10.1016/j.materresbull.2021.111224
  • Alizadeh A, Taheri-Nassaj E, Baharvandi  H. Preparation and investigation of Al–4 wt% B4C nano composite powders using mechanical milling. Bull Mater Sci. 2011;34(5):1039–1048. doi: 10.1007/s12034-011-0158-5
  • Swain PK, Mohapatra KD, Daset R. Experimental investigation into characterization and machining of Al + SiCp nano-composites using coated carbide tool. Mech Ind. 2020;21(307):1–12. doi: 10.1051/meca/2020015
  • Ge YF, Xu JH, Yang H. Work piece surface quality when ultra-precision turning of SiCp/Al composites. J Mater Process Technol. 2008;203(1–3):166–175. doi: 10.1016/j.jmatprotec.2007.09.070
  • Abdollahi A, Alizadeh A, Reza Baharvandi H. Dry sliding tribological behavior and mechanical properties of Al2024–5wt. % B4C nano composite produced by mechanical milling and hot extrusion. Mater Design. 2014;55:471–481. doi: 10.1016/j.matdes.2013.09.024
  • Sasimurugan T, Palanikumar K. Experimental studies on machining characteristics of hybrid aluminium metal matrix composite and carbon nano-tubes added hybrid aluminum metal matrix composite. IEEE. 2011; 978-1-4673-0074–2/11.
  • Sai Chaitanya Kishorea D, Prahlada Rao K, Mahamani A. Investigation of cutting force, surface roughness and flank wear in turning of in-situ Al6061-TiC metal matrix composite. Procedia Mater Sci. 2014;6:1040–1050. doi: 10.1016/j.mspro.2014.07.175
  • Yadav M, Kumaraswamidhas LA, Sudhir K. Investigation of solid particle erosion behavior of Al-Al2O3 and Al-ZrO2 metal matrix composites fabricated through powder metallurgy technique. Tribol Int. 2022;172(107636):1–12. doi: 10.1016/j.triboint.2022.107636
  • Khakbiz M, Akhlaghi F. Synthesis and structural characterization of Al–B4C nano-composite powders by mechanical alloying. J Alloys Compd. 2009;479(1–2):334–341. doi: 10.1016/j.jallcom.2008.12.076
  • Marini D, Cunningham D, Corney JR. Near net shape manufacturing of metal: a review of approaches and their evolutions. Proc IMechE Part B. 2018;232(4):650–669. doi: 10.1177/0954405417708220
  • Prabhu TR. Ram Prabhu T. Effects of solid lubricants, load, and sliding speed on the tribological behavior of silica reinforced composites using design of experiments. Mater Design. 2015;77:149–160. doi: 10.1016/j.matdes.2015.03.059
  • Jeyasimman D, Narayanaswamy R, Ponalagusamy R. The effect of various reinforcements on dry sliding wear behaviour of AA6061 nano composites. Mater Design. 2014;64:783–793. doi: 10.1016/j.matdes.2014.08.039
  • Prasad MMS, Srikant RR. Performance evaluation of nano-graphite inclusions in cutting fluids with MQL technique in turning of AISI 1040 steel. IJRET. 2013;2(11):381–393. doi: 10.15623/ijret.2013.0211058
  • Zalesnov AI, Petukhov EN, Podshivalkin VA. Endurance tests of diamond tools in the turning of aluminum composites reinforced by nano and micro particles. Russ Engin Res. 2014;34(7):475–47. doi: 10.3103/S1068798X14070168
  • Verezub O, Kalazi Z, Sytcheva A. Performance of a cutting tool made of steel matrix surface nano-composite produced by in situ laser melt injection technology. J Mater Process Technol. 2011;211(4):750–758. doi: 10.1016/j.jmatprotec.2010.12.009
  • Aramesh M, Shaban Y, Balazinski M. Survival life analysis of the cutting tools during turning titanium metal matrix composites (ti-MMCs). Procedia CIRP. 2014;14:605–609. doi: 10.1016/j.procir.2014.03.047
  • Kok M. A study on the machinability of Al2O3 particle reinforced aluminum alloy composite. 11th Int. Inorganic-Bonded Fiber Composites Conference, Madrid, Spains 2008; 5-7:272–281.
  • Suresh P, Marimuthu K, Ranganathan S. Optimization of machining parameters in turning of Al−SiC−Gr hybrid metal matrix composites using grey-fuzzy algorithm. Trans Nonferrous Met Soc China. 2014;24(9):2805–2814. doi: 10.1016/S1003-6326(14)63412-9
  • Basavarajappa S. Tool wear in turning of graphitic hybrid metal matrix composites. Mater Manuf Processes. 2009;24(4):484–487. doi: 10.1080/10426910802714431
  • Gopalakannan S, Senthilvelan T. Application of response surface method on machining of Al–SiC nano-composites. Measurement. 2013;46(8):2705–2715. doi: 10.1016/j.measurement.2013.04.036
  • Vijayraj S, Arivazhagan A, Prakash G. Optimization of machining parameters of AL-SIC nano composites using DOE. Int J Appl Eng Res. 2015;10(7):5863.
  • El-Kady E, Gaafer AM, Ghaith MH. The effect of machining parameters on the cutting forces, tool wear, and machined surface roughness of metal matrix nano-composite material. Adv Mater. 2015;4(3):43–50. doi: 10.11648/j.am.20150403.11
  • Manohar HS, Chikkanna N. Uma Maheswar Gowda B. Effect of addition of nanoclay on machinability of Al/nano clay metal matrix composites. IJERA. 2012;2(5):1360–1370.
  • Szymański M, Przestacki D, Szymański P. Tool wear and surface roughness in turning of metal matrix composite built of Al2O3 sinter saturated by aluminum alloy in vacuum condition. Materials. 2022;15(23):8375. doi: 10.3390/ma15238375
  • Rodríguez-Cabriales G, Garay-Reyes CG, Guía-Tello JC, et al. Abrasive wear behavior of Al–4Cu–1.5Mg–WC composites synthesized through powder metallurgy. Lubricants. 2023;11(3):103. doi: 10.3390/lubricants11030103
  • Varna K, Vijay Kumar S, Lakshmidevamma M. M., et al. Comparison study of tensile strength characteristics of Al2O3 reinforced Al7075 and Al6061. 2022 Advances in Science and Engineering Technology International Conferences (ASET); Dubai, United Arab Emirates: 2022. 1–8. doi: 10.1109/ASET53988.2022.9734894.
  • Priyadarshi D, Sharma RK. Optimization for turning of Al-6061-SiC-Gr hybrid nano composites using response surface methodologies. Mater Manuf Processes. 2016;31(10):1342–1352. doi: 10.1080/10426914.2015.1070427
  • Raviraj S, Laxmikanth K, Pai R. Experimental and analytical study on chip formation mechanism in machining of DRAC ARPN. ARPN J Eng Appl Sci. 2008;3(5):27–32.
  • Radhika N, Subramanian R, Sajith A. Analysis of chip formation in machining aluminium hybrid composites. J Sci Res. 2014;2(1):009–015.
  • Sahoo AK, Pradhan S, Rout AK. Development and machinability assessment in turning Al/SiCp-metal matrix composite with multilayer coated carbide insert using Taguchi and statistical techniques. Arch Civil Mech Eng. 2013;13(1):27–35. doi: 10.1016/j.acme.2012.11.005
  • Bhusha RK. Effect of tool wear on surface roughness in machining of AA7075/10 wt.% SiC composite. Compos Part C. 2022;8(100254):1–19. doi: 10.1016/j.jcomc.2022.100254
  • Pugazhenthi A, Kanagaraj G, Dinaharan I, et al. Turning characteristics of in situ formed TiB2 ceramic particulate reinforced AA7075 aluminum matrix composites using polycrystalline diamond cutting tool. Measurement. 2018;121:39–46. doi: 10.1016/j.measurement.2018.02.039
  • Gomez-Parra A, Alvarez M, Salguero J. Analysis of the evolution of the Built-up edge and Built-up layer formation mechanisms in the dry turning of aeronautical aluminium alloys. Wear. 2013;302(1–2):1209–1218. doi: 10.1016/j.wear.2012.12.001
  • Shahabi HH, Ratnam MM. In-cycle detection of built-up edge (BUE) from 2-D images of cutting tools using machine vision. Int J Adv Manuf Technol. 2010;46(9–12):1179–1189. doi: 10.1007/s00170-009-2180-y
  • Rubio EM, Camacho AM, Sanchez-Sola. Surface roughness of AA7050 alloy turned bars. Analysis of the influence of the length of machining. J Mater Process Technol. 2005;682–689:122–123. doi: 10.1016/j.jmatprotec.2005.02.096
  • Atlati S, Haddag B, Nouari M. Effect of the local friction and contact nature on the built-up edge formation process in machining ductile metals. Tribol Int. 2015;90:217–227. doi: 10.1016/j.triboint.2015.04.024
  • Salguero J, Batista M, Garcia-Jurado D. Evolution of the surface quality in the high-speed milling of aerospace aluminum Alloys. Adv Sci Lett. 2013;19(2):379–383. doi: 10.1166/asl.2013.4735
  • Sanchez-Sola JM Parametric Analysis of Machining Aluminum Alloys. Relation to the Topography of the Machined Samples [ Ph.D. Thesis]. Madrid, Spain: Universidad Nacional de Educación a Distancia (UNED); 2004.
  • Batista M, Del Sol I, Gomez-Parra A. Study of the tool wear process in the dry turning of Al–Cu alloy. Metals. 2019;9(1094):1–12; Carrilero MS, Bienvenido R, Sanchez JM. A SEM and EDS insight into the BUL and BUE differences in the turning processes of AA2024 Al–Cu alloy. Int. J. Mach. Tools Manuf. 2002; 42:215–220. doi: 10.3390/met9101094
  • Salguero J, Vazquez-Martinez J, Sol I. Application of pin-on-disc techniques for the study of tribological interferences in the dry machining of A92024-T3 (Al–Cu) alloys. Materials. 2007;11(7):1236. doi: 10.3390/ma11071236
  • Zedan Y, Samuel AM, Doty HW, et al. Effects of free-cutting elements addition on the microstructure, hardness, and machinability of Al-11%Si–Cu–Mg casting alloys. Inter Metalcast. 2022;16(4):1915–1931. doi: 10.1007/s40962-021-00740-2
  • Uludağ M, Şakiryazman DD, Gemi L, et al. Relationship between machinability microstructure and mechanical properties of Al-7Si alloy. J Test Eval. 2018;46(6):2592–2603. doi: 10.1520/JTE20170083
  • Shinde DM, Sahoo P. Influence of speed and sliding distance on the tribological performance of Submicron particulate reinforced Al-12Si/1.5 wt% B4C composite. Inter Metalcast. 2022;16(2):739–758. doi: 10.1007/s40962-021-00636-1
  • Kumar R, Chauhan S. Study on surface roughness measurement for turning of Al 7075/10/SiCp and Al 7075 hybrid composites by using response surface methodology (RSM) and artificial neural networking (ANN). Meas. 2015;65:166–180. doi:10.1016/j.measurement.2015.01.003
  • Sahoo AK, Pradhan S. Modeling and optimization of Al/SiCp MMC machining using Taguchi approach. Meas. 2013;46(9):3064–3072. doi:10.1016/j.measurement.2013.06.001
  • Shayan M, Eghbali B, Niroumand B. Synthesis and characterization of Aa2024-SiO2 Nanocomposites through the vortex method. Inter Metalcast. 2021;15(4):1427–1440. doi: 10.1007/s40962-021-00574-y
  • Gnanavelbabu A, Surendran KTS, Kumar S. Process optimization and studies on mechanical characteristics of AA2014/Al2O3 nanocomposites fabricated through ultrasonication assisted stir–squeeze casting. Inter Metalcast. 2021;16(2):759–782. doi: 10.1007/s40962-021-00634-3
  • Khanna N, Suri NM, Shah P, et al. Cryogenic turning of in-house cast magnesium based MMCs: a comprehensive investigation author links open overlay panel. J Mater Res Technol. 2020;9(4):7628–7643. doi: 10.1016/j.jmrt.2020.05.023
  • Ozcatalbas Y. Investigation of the machinability behaviour of Al4C3 reinforced Al-based composite produced by mechanical alloying technique. Compos Sci Technol. 2003;63:53–61. doi: 10.1016/S0266-3538(02)00177-X
  • Siddesh Kumar NG, Suresh R, G SShiva Shankar GS. High temperature wear behavior of Al2219/n-B4C/MoS2 hybrid metal matrix composites. Composites Commun. 2020;19:61–73
  • Gowda V, Hanumanthappa H, Bharath Kumar Shanmugam CDP, et al. High-temperature tribological studies on hot-forged Al6061–TiB2 in situ composites. J Bio Tribo Corros. 2022;8(4):101. doi: 10.1007/s40735-022-00699-5
  • Basavarajappa S, Chandramohan G, Paulo Davim J. Application of Taguchi techniques to study dry sliding wear behaviour of metal matrix composites. Mater Des. 2007;28(4):1393–1398. doi: 10.1016/j.matdes.2006.01.006
  • Manjunatha CJ, Durga Prasad C, Hanumanthappa H, et al. Influence of microstructural characteristics on wear and corrosion behaviour of Si3N4 reinforced Al2219 composites. Adv Mater Sci Eng. 2023;2023:1–9. Article ID 1120569. doi: 10.1155/2023/1120569
  • Siddesh Kumar NG, ShivaShankar GS, Basavarajappa S, et al. Some studies on mechanical and machining characteristics of Al2219/n-B4 C/MoS2 nano-hybrid metal matrix composites. Measurement. 2017;107:1–11. doi: 10.1016/j.measurement.2017.05.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.