79
Views
0
CrossRef citations to date
0
Altmetric
Research article

Hot cracks in camshaft casting: initiation and propagation

, , , , , , , & show all
Pages 48-70 | Received 11 Sep 2023, Accepted 27 Nov 2023, Published online: 11 Dec 2023

References

  • Yang Y, Rosochowski A, Wang X, et al. Mechanism of “black line” formation in chilled cast iron camshafts. J Mater Process Technol. 2004;145:264–267. doi: 10.1016/S0924-0136(03)00678-2
  • Kumar Gupta T, Mangal D, Gupta A. Impact of material properties on the dynamics of cam shaft, Mater. Today Proc. 2021;47:4083–4091. doi: 10.1016/j.matpr.2021.06.310
  • Li L, Zhang R, Yuan Q, et al. An integrated approach to study the hot tearing behavior by coupling the microscale phase field model and macroscale casting simulations. J Mater Process Technol. 2022;310:117782. doi: 10.1016/j.jmatprotec.2022.117782
  • Yue C, Yuan X, Su M, et al. Effect of adding pr on the microstructure and hot tearing sensitivity of as-cast al-Cu-mg alloys, Mater. Charact. 2022;191:112141. doi: 10.1016/j.matchar.2022.112141
  • Zhong H, Lin Z, Han Q, et al., Hot tearing behavior of AZ91D magnesium alloy, J. Magnes. Alloy. (2023). 10.1016/j.jma.2023.02.010.
  • Hu B, Li Z, Li D, et al. A hot tearing criterion based on solidification microstructure in cast alloys. J Mater Sci Technol. 2022;105:68–80. doi: 10.1016/j.jmst.2021.06.071
  • Chen D, Dou R, Han J, et al. Prediction of hot tearing susceptibility of direct chill casting of AA6111 alloys via finite element simulations. Trans Nonferrous Met Soc China (English Ed). 2020;30(12):3161–3172. doi: 10.1016/S1003-6326(20)65451-6
  • Hatami N, Babaei R, Dadashzadeh M, et al. Modeling of hot tearing formation during solidification. J Mater Process Technol. 2008;205(1–3):506–513. doi: https://doi.org/10.1016/j.jmatprotec.2007.11.260
  • Clyne T, Wolf M, Kurz W. The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting, Metall. Metall Trans B. 1982;13(2):259–266. doi: https://doi.org/10.1007/BF02664583
  • Li Y, Li H, Katgerman L, et al. Recent advances in hot tearing during casting of aluminium alloys, Prog. Mater Sci. 2021;117:100741. doi: 10.1016/j.pmatsci.2020.100741
  • Suyitno WH, Kool WH, Katgerman L. Integrated approach for prediction of hot tearing, Metall. Mater. Trans A Phys Metall Mater Sci. 2009;40(10):2388–2400. doi: 10.1007/s11661-009-9941-y
  • Monroe C, Beckermann C. Development of a hot tear indicator for steel castings, Mater. Sci Eng A. 2005;413–414:30–36. doi: 10.1016/j.msea.2005.09.047
  • Chang X, Chen G, Sun W, et al. Microstructures, mechanical properties and solidification mechanism of a hot tearing sensitive aluminum alloy asymmetric part fabricated by squeeze casting. J Alloys Compd. 2021;886:161254. doi: 10.1016/j.jallcom.2021.161254
  • D’Elia F, Ravindran C, Sediako D, et al. Hot tearing mechanisms of B206 aluminum-copper alloy, Mater. Des. 2014;64:44–55. doi: 10.1016/j.matdes.2014.07.024
  • Liu W, Jiang B, Yang Q, et al. Effect of ce addition on hot tearing behavior of AZ91 alloy, Prog. Nat Sci Mater Int. 2019;29(4):453–456. doi: 10.1016/j.pnsc.2019.07.002
  • Xiang Z, Zhu Z, Lei X. Fatigue assessment and crack propagation of floorbeam cutout in orthotropic bridge decks, Mater. Des. 2023;226:111676. doi: 10.1016/j.matdes.2023.111676
  • Wang W, Zhu Q, Ni T, et al. Numerical simulation of interfacial and subinterfacial crack propagation by using extended peridynamics. Comput Struct. 2023;279:106971. doi: 10.1016/j.compstruc.2023.106971
  • Amato D, Mayrhofer L, Robl C, et al. Prediction of the crack growth propagation direction in non-proportional mixed-mode missions. Int J Fatigue. 2023;166:107233. doi: 10.1016/j.ijfatigue.2022.107233
  • Liao Y, Li Y, Huang M, et al. Effect of hole relative size and position on crack deflection angle of repaired structure, theor. Appl Fract Mech. 2019;101:92–102. doi: 10.1016/j.tafmec.2019.02.010
  • Wu D, Liao D, Fan S, et al. Numerical simulation of hot tears initiation and growth in castings. Procedia Manuf. 2019;37:16–23. doi: 10.1016/j.promfg.2019.12.006
  • Zhu Y, Zhou K, Xu G, et al. Crack formation of camshaft castings: hot tearing susceptibility and root causes. Eng Fail Anal. 2023;147:107143. doi: 10.1016/j.engfailanal.2023.107143
  • Muhmond HM. An investigation on hot tearing cracks in nodular cast iron with hot tensile tests near the melting point. Int J Cast Met Res. 2019;32:289–294. doi: 10.1080/13640461.2020.1713968
  • Zhang H, Nagaumi H, Zuo Y, et al. Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7XXX aluminum alloys. Part 1: development of a mathematical model and comparison with experimental results, Mater. Mater Sci Eng A. 2007;448(1–2):189–203. doi: https://doi.org/10.1016/j.msea.2006.10.062
  • Jiang J, Ge N, Huang M, et al. Numerical simulation of squeeze casting of aluminum alloy flywheel housing with large wall thickness difference and complex shape. Trans Nonferrous Met Soc China. 2023;33(5):1345–1360. doi: 10.1016/S1003-6326(23)66187-4
  • Norman V, Calmunger M. On the micro- and macroscopic elastoplastic deformation behaviour of cast iron when subjected to cyclic loading. Int J Plast. 2019;115:200–215. doi: 10.1016/j.ijplas.2018.11.019
  • Zhou Y, Mao P, Wang Z, et al. Effects of copper content and mold temperature on the hot tearing susceptibility of mg-7Zn-xCu-0.6Zr alloys, Metall. Mater. Trans B Process Metall Mater Process Sci. 2018;49(6):3444–3455. doi: 10.1007/s11663-018-1389-2
  • Liu Y, Chen F, Lu N, et al. Fatigue performance of rib-to-deck double-side welded joints in orthotropic steel decks, Eng. Fail Anal. 2019;105:127–142. doi: 10.1016/j.engfailanal.2019.07.015
  • Li H, Wang H, Tang L, et al. Fracture of brittle solid material containing a single internal crack of different depths under three-point bending based on 3D-ILC. Eng Fract Mech. 2021;248:107673. doi: 10.1016/j.engfracmech.2021.107673
  • Yang Y, Vormwald M. Fatigue crack growth simulation under cyclic non-proportional mixed mode loading. Int J Fatigue. 2017;102:37–47. doi: 10.1016/j.ijfatigue.2017.04.014
  • Chang G, Jin G, Chen S, et al. Research on the formation mechanism of internal crack in the continuous casting slab, Acta Metall. Sin. (English Lett. 2007;20(1):35–39. doi: 10.1016/S1006-7191(07)60005-2
  • Gavalas E, Aslanis P, Marinakis N, et al. Optimization of cooling conditions to avoid surface cracks in direct chill casting of Cu-fe-P alloy, Eng. Fail Anal. 2020;118:104955. doi: 10.1016/j.engfailanal.2020.104955
  • Toribio J, González B, Matos JC. Review and synthesis of stress intensity factor (SIF) solutions for circular inner cracks in round bars under tension loading, procedia struct. Integr. 2021;37:995–1000. doi: 10.1016/j.prostr.2022.02.036
  • Xu W, Zhang B, Wu X. Three-dimensional weight function analyses and stress intensity factors for two eccentric and asymmetric surface cracks and surface-corner cracks at a circular hole, Eng. Fract Mech. 2023;277:108972. doi: 10.1016/j.engfracmech.2022.108972
  • Anoop Kumar A, Arunkumar S, Arutselvan CK, et al. Analysis of stress intensity factor of a finite plate with centre crack containing different hole shapes, Mater. Today Proc. 2022;80:790–798. doi: 10.1016/j.matpr.2022.11.130
  • Žák S, Horníková J, Šandera P, et al. Local and equivalent stress intensity factors for tortuous cracks under remote mode II loading, theor. Appl Fract Mech. 2019;101:35–45. doi: 10.1016/j.tafmec.2019.01.030
  • Feng Y, Mao P, Liu Z, et al. Hot tearing susceptibility of MgZn4.5YxZr0.5 alloys and mechanism. China Foundry. 2016;13(3):159–165. doi: https://doi.org/10.1007/s41230-016-5139-2
  • Qiang B, Qiu H, Li Y, et al. Stress intensity factors and weight functions for semi-elliptical cracks at weld toes in U-rib-to-deck joints, theor. Appl Fract Mech. 2023;123:103697. doi: 10.1016/j.tafmec.2022.103697
  • Fang X, Zhang H, Ma D. Influence of initial crack on fatigue crack propagation with mixed mode in U71Mn rail subsurface, Eng. Fail Anal. 2022;136:106220. doi: 10.1016/j.engfailanal.2022.106220
  • Tan H, Hu X, Wu X, et al. Initial crack propagation of integral joint in steel truss arch bridges and its fatigue life accession. Eng Fail Anal. 2021;130:105777. doi: 10.1016/j.engfailanal.2021.105777
  • Šabík V, Futáš P, Pribulová A. Failure analysis of a clutch wheel for wind turbines with the use of casting process simulation, Eng. Fail Anal. 2022;135:106159. doi: 10.1016/j.engfailanal.2022.106159
  • Sachin SS, Ramesh K. Study on the effect of porosity on crack propagation, Mater. Today Proc. 2019;28:825–829. doi: 10.1016/j.matpr.2019.12.306
  • Iskander M, Shrive N. The effect of the shape and size of initial flaws on crack propagation in uniaxially compressed linear brittle materials, theor. Appl Fract Mech. 2020;109:102742. doi: 10.1016/j.tafmec.2020.102742
  • Xu L, Gong F, Luo S. Effects of pre-existing single crack angle on mechanical behaviors and energy storage characteristics of red sandstone under uniaxial compression, theor. Appl Fract Mech. 2021;113:102933. doi: 10.1016/j.tafmec.2021.102933
  • Ghasemi-Ghalebahman A, Aghdam AA, Pirmohammad S, et al. Experimental investigation of fracture toughness of nanoclay reinforced polymer concrete composite: effect of specimen size and crack angle, theor. Appl Fract Mech. 2022;117:103210. doi: 10.1016/j.tafmec.2021.103210

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.