53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of TiC nanoparticles on microstructure and corrosion resistance of laser cladding Al-CNTs composite coatings on AZ31 alloy

, , , &
Pages 136-147 | Received 30 Oct 2023, Accepted 23 Feb 2024, Published online: 06 Mar 2024

References

  • Liu B, Yang J, Zhang XY, et al. Development and application of magnesium alloy parts for automotive OEMs: a review. J Magnes Alloy. 2023;11(1):15–47. doi: 10.1016/j.jma.2022.12.015
  • Wang GG, Weiler JP. Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications. J Magnes Alloy. 2023;11(1):78–87. doi: 10.1016/j.jma.2022.10.001
  • Oliveira MCLD, Silva RMPD, Souto RM, et al. Investigating local corrosion processes of magnesium alloys with scanning probe electrochemical techniques: a review. J Magnes Alloy. 2022;10(11):2997–3030. doi: 10.1016/j.jma.2022.09.024
  • Liu HG, Cao FY, Song GL, et al. Review of the atmospheric corrosion of magnesium alloys. J Mater Sci Technol. 2019;35(9):2003–2016. doi: 10.1016/j.jmst.2019.05.001
  • Liu SF, Paidar M, Ojo OO, et al. Friction stir processing of hybridized AZ31B magnesium alloy-based composites by adding CeO2 and ZrO2 powders: mechanical, wear, and corrosion behaviors. J Mater Res Technol. 2023;24:1949–1972. doi: 10.1016/j.jmrt.2023.03.028
  • Jiang LP, Cui XF, Jin G, et al. Synthesis and microstructure, properties characterization of Ni-Ti-Cu/Cu-Al functionally graded coating on Mg-li alloy by laser cladding. Appl Surf Sci. 2022;575:151645. doi: 10.1016/j.apsusc.2021.151645
  • Jiang LP, Cui XF, Jin G, et al. Design and characterization of a novel Cu2.3Al1.3Ni1.7SnCr0.3 multi-principal element alloy coating on magnesium alloy by laser cladding. J Mater Sci Technol. 2023;152:220–236. doi: 10.1016/j.jmst.2022.11.064
  • Zhang YQ, Guo J, Xu GD, et al. Effect of Nd2O3 on microstructure, corrosion and wear properties of laser cladding Zr-based amorphous composite coatings on AZ91D magnesium alloy. Appl Surf Sci. 2023;611:155587. doi: 10.1016/j.apsusc.2022.155587
  • Lin PY, Zhang ZH, Ren LQ. The mechanical properties and microstructures of AZ91D magnesium alloy processed by selective laser cladding with Al powder. Opt Laser Technol. 2014;60:61–68. doi: 10.1016/j.optlastec.2013.12.024
  • Paital SR, Bhattacharya A, Moncayo M, et al. Improved corrosion and wear resistance of mg alloys via laser surface modification of al on AZ31B. Sur Coat Technol. 2012;206(8–9):2308–2315. doi: 10.1016/j.surfcoat.2011.10.009
  • Bu R, Jin AX, Sun Q, et al. Study on laser cladding and properties of AZ63-ER alloy for automobile engine. J Mater Res Technol. 2020;9(3):5154–5160. doi: 10.1016/j.jmrt.2020.03.032
  • Huang SJ, Abbasa A, Ballókováb B. Effect of CNT on microstructure, dry sliding wear and compressive mechanical properties of AZ61 magnesium alloy. J Mater Res Technol. 2019;8(5):4273–4286. doi: 10.1016/j.jmrt.2019.07.037
  • Say Y, Guler O, Dikici B. Carbon nanotube (CNT) reinforced magnesium matrix composites: the effect of CNT ratio on their mechanical and corrosive properties. Mater Sci Eng A. 2020;798:139636. doi: 10.1016/j.msea.2020.139636
  • Liu FJ, Li AD, Shen ZK, et al. Microstructure and corrosion behavior of Al-ti-TiC-CNTs/AZ31 magnesium matrix composites prepared using laser cladding and high speed friction stir processing. Opt Laser Technol. 2022;152:108078. doi: 10.1016/j.optlastec.2022.108078
  • Zheng BJ, Chen XM, Lian JS. Microstructure and wear property of laser cladding al+SiC powders on AZ91D magnesium alloy. Opt Laser Technol. 2010;48(5):526–532. doi: 10.1016/j.optlaseng.2010.01.001
  • Zhu HM, Gong WJ, Yi ZW. Microstructure and property of laser cladding Al-cu alloy coating on surface of AZ91 magnesium alloy. Trans Nonferrous Met Soc China. 2016;26(7):1498–1504.
  • Cui Y. Influence of laser surface melting on tribological behaviour of AZ31B. Surf Eng. 2018;34(4):296–300. doi: 10.1080/02670844.2016.1246994
  • Sun Q, Li ZY, Zhang YQ, et al. Microstructure and properties of laser cladding Al-TiC coating on AZ91D magnesium alloy. Sur Technol. 2017;46(1):40–44.
  • Arthanari S, Li YH, Nie L, et al. Microstructural evolution and properties analysis of laser surface melted and Al/SiC cladded magnesium-rare earth alloys. J Alloy Compd. 2020;848:156598. doi: 10.1016/j.jallcom.2020.156598
  • Wan SM, Cui XF, Jin G, et al. Microstructure and properties characterization of laser-cladded Cu–al alloy coatings on Mg–Li alloy. Sur Coat Technol. 2023;460:129430. doi: 10.1016/j.surfcoat.2023.129430
  • Furukawa M, Horita Z, Nemoto M, et al. Microhardness measurements and the Hall-Petch relationship in an Al-mg alloy with submicrometer grain size. Acta Mater. 1996;44(11):4619–4629. doi: 10.1016/1359-6454(96)00105-X
  • Dutta Majumdar J, Galun R, Mordike BL, et al. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy. Mater Sci Eng A. 2003;361(1–2):119–129. doi: 10.1016/S0921-5093(03)00519-7
  • Liu FJ, Li YP, Sun ZY, et al. Corrosion resistance and tribological behavior of particles reinforced AZ31 magnesium matrix composites developed by friction stir processing. J Mater Res Technol. 2021;11:1019–1030. doi: 10.1016/j.jmrt.2021.01.071
  • Liu FJ, Ji Y, Sun ZY, et al. Enhancing corrosion resistance and mechanical properties of AZ31 magnesium alloy by friction stir processing with the same speed ratio. J Alloys Compd. 2020;829:154452. doi: 10.1016/j.jallcom.2020.154452
  • Liu FJ, Ji Y, Bai YX. Influence of multipass high rotating speed friction stir processing on microstructure evolution, corrosion behavior and mechanical properties of stirred zone on AZ31 alloy. Trans Nonferrous Met Soc China. 2020;30(12):3263–3273. doi: 10.1016/S1003-6326(20)65459-0
  • Liu FJ, Ji Y, Sun ZY, et al. Enhancing corrosion resistance of al-Cu/AZ31 composites synthesized by a laser cladding and FSP hybrid method. Mater Manuf Process. 2019;34(13):1458–1466. doi: 10.1080/10426914.2019.1661432
  • Liu FJ, Ji Y, Meng QS, et al. Microstructure and corrosion resistance of laser cladding and friction stir processing hybrid modification Al-si coatings on AZ31B. Vacuum. 2016;133:31–37. doi: 10.1016/j.vacuum.2016.08.010
  • Seifiyan H, Sohi MH, Ansari M, et al. Influence of friction stir processing conditions on corrosion behavior of AZ31B magnesium alloy. J Magnes Alloy. 2019;7(4):605–616. doi: 10.1016/j.jma.2019.11.004
  • Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater. 1999;1(1):11–33. doi: 10.1002/(SICI)1527-2648(199909)1:1<11:AID-ADEM11>3.0.CO;2-N
  • Dubey D, Kadali K, Kancharla H, et al. Effect of precipitate characteristics on the corrosion behavior of a AZ80 magnesium alloy. Met Mater Int. 2021;27(9):3282–3292. doi: 10.1007/s12540-020-00764-z
  • Yang LQ, Li ZY, Zhang YQ, et al. Al-TiC in situ composite coating fabricated by low power pulsed laser cladding on AZ91D magnesium alloy. Appl Surf Sci. 2018;435:1187–1198. doi: 10.1016/j.apsusc.2017.11.240
  • Arthanari S, Li YH, Nie L, et al. Microstructural evolution and properties analysis of laser surface melted and Al/SiC cladded magnesium-rare earth alloys. J Alloys Compd. 2020;848:156598. doi: 10.1016/j.jallcom.2020.156598
  • Aydin F, Sun Y, Turan ME. Influence of TiC content on mechanical, wear and corrosion properties of hot-pressed AZ91/TiC composites. J Compos Mater. 2020;54(2):141–152. doi: 10.1177/0021998319860570
  • Aung NN, Zhou W, Goh CS, et al. Effect of carbon nanotubes on corrosion of Mg–CNT composites. Corros Sci. 2010;52(5):1551–1553. doi: 10.1016/j.corsci.2010.02.025
  • Zang QH, Chen HM, Zhang J, et al. Microstructure, mechanical properties and corrosion resistance of AZ31/GNPs composites prepared by friction stir processing. J Mater Res Technol. 2021;14:195–201. doi: 10.1016/j.jmrt.2021.06.052
  • Mindivan H, Efe A, Kosatepe AH, et al. Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites. Appl Surf Sci. 2014;318:234–243. doi: 10.1016/j.apsusc.2014.04.127

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.