96
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Deep remote fusion: development of improved deep CNN with atrous convolution-based remote sensing image fusion

, &
Pages 382-402 | Received 03 Jan 2023, Accepted 19 Apr 2023, Published online: 11 May 2023

References

  • Javier M-DR, Enrique V-PN, Ovidio R-RA. Sallfus, library for satellite images fusion on homogeneous and heterogeneous computing architectures. IEEE Latin Am Trans. 2020;18(12):2130–2137.
  • Huang X, Wen D, Xie J, et al. Quality assessment of panchromatic and multispectral image fusion for the ZY-3 satellite: from an information extraction perspective. IEEE Geosci Remote Sens Lett. 2014;11(4):753–757.
  • Chen C, Li Y, Liu W, et al. SIRF: simultaneous satellite image registration and fusion in a unified framework. IEEE Trans Image Process. 2015;24(11):4213–4224.
  • Choi M. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter. IEEE Trans Geosci Remote Sens. 2006;44(6):1672–1682.
  • Zhang K, Wang M, Yang S, et al. Convolution structure sparse coding for fusion of panchromatic and multispectral images. IEEE Trans Geosci Remote Sens. 2019;57(2):1117–1130.
  • Zeng T, Ao D, Hu C, et al. Multiangle BSAR imaging based on BeiDou-2 navigation satellite system: experiments and preliminary results. IEEE Trans Geosci Remote Sens. 2015;53(10):5760–5773.
  • Li Z, Leung H. Fusion of multispectral and panchromatic images using a restoration-based method. IEEE Trans Geosci Remote Sens. 2009;47(5):1482–1491.
  • Choi J, Yu K, Kim Y. A New adaptive component-substitution-based satellite image fusion by using partial replacement. IEEE Trans Geosci Remote Sens. 2011;49(1):295–309.
  • Byun Y, Choi J, Han Y. An area-based image fusion scheme for the integration of SAR and optical satellite imagery. IEEE J Sel Top Appl Earth Obs Remote Sens. 2013;6(5):2212–2220.
  • Luo X, Tong X, Hu Z. Improving satellite image fusion via generative adversarial training. IEEE Trans Geosci Remote Sens. 2021;59(8):6969–6982.
  • Choi M, Kim RY, Nam M-R, et al. Fusion of multispectral and panchromatic satellite images using the curvelet transform. IEEE Geosci Remote Sens Lett. 2005;2(2):136–140.
  • Ying J, Shen H-L, Cao S-Y. Unaligned hyperspectral image fusion via registration and interpolation modeling. IEEE Trans Geosci Remote Sens. 2022;60:1–14. Art no. 5511114.
  • Chang N-B, Bai K, Imen S, et al. Multisensor satellite image fusion and networking for All-weather environmental monitoring. IEEE Syst J. 2018;12(2):1341–1357.
  • Kim Y, Choi J, Han D, et al. Block-based fusion algorithm with simulated band generation for hyperspectral and multispectral images of partially different wavelength ranges. IEEE J Sel Top Appl Earth Obs Remote Sens. 2015;8(6):2997–3007.
  • Zhukov B, Oertel D, Lanzl F, et al. Unmixing-based multisensor multiresolution image fusion. IEEE Trans Geosci Remote Sens. 1999;37(3):1212–1226.
  • Gómez-Chova L, Tuia D, Moser G, et al. Multimodal classification of remote sensing images: a review and future directions. Proc IEEE. 2015;103(9):1560–1584.
  • Chu H, Zhu W. Fusion of IKONOS satellite imagery using IHS transform and local variation. IEEE Geosci Remote Sens Lett. 2008;5(4):653–657.
  • Shao Z, Cai J. Remote sensing image fusion with deep convolutional neural network. IEEE J Sel Top Appl Earth Obs Remote Sens. 2018;11(5):1656–1669.
  • Ye F, Xiongfei L, Xiaoli Z. FusionCNN: a remote sensing image fusion algorithm based on deep convolutional neural networks. Multimed Tools Appl. 2019;78.
  • Li W, Yang C, Peng Y, et al. A multi-cooperative deep convolutional neural network for spatiotemporal satellite image fusion. IEEE J Sel Top Appl Earth Obs Remote Sens. 2021;14:10174–10188.
  • Song H, Liu Q, Wang G, et al. Spatiotemporal satellite image fusion using deep convolutional neural networks. IEEE J Sel Top Appl Earth Obs Remote Sens. 2018;11(3):821–829.
  • Li W, Zhang X, Peng Y, et al. DMNet: a network architecture using dilated convolution and multiscale mechanisms for spatiotemporal fusion of remote sensing images. IEEE Sensors J. 2020;20(20):12190–12202.
  • Zhang C, Yue P, Tapete D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J Photogramm Remote Sens. 2020;166:183–200.
  • Li Y, Zhou Y, Zhang Y, et al. DKDFN: domain knowledge-guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification. ISPRS J Photogramm Remote Sens. 2022;186:170–189.
  • Hosseinpour H, Samadzadegan F, Javan FD. CMGFNet: a deep cross-modal gated fusion network for building extraction from very high-resolution remote sensing images. ISPRS J Photogramm Remote Sens. 2022;184:96–115.
  • https://www.researchgate.net/publication/272507271_Matlab-Code-and-MS-and-PAN-datasets: access date: 2022-05-07.
  • https://resources.maxar.com/product-samples/pansharpening-benchmark-dataset: access date: 2022-05-07.
  • Bairwa AK, Joshi S, Singh D. Dingo optimizer: a nature-inspired metaheuristic approach for engineering problems. Math Probl Eng. 2021;2571863:12.
  • Mulla A, Baviskar J, Naik R, et al. Enhanced quality LANDSAT image processing based on 4-level Sub-band replacement DWT. 2015 IEEE Aerospace Conference. 2015. p. 1–7
  • Mehrseresht N, Taubman D. An efficient content-adaptive motion-compensated 3-D DWT with enhanced spatial and temporal scalability. IEEE Trans Image Process. 2006;15(6):1397–1412.
  • Zhang B, Sun X, Gao L, et al. Endmember extraction of hyperspectral remote sensing images based on the discrete particle swarm optimization algorithm. IEEE Trans Geosci Remote Sens. 2011;49(11):4173–4176.
  • Wang Y, Zhu Q, Ma H, et al. A hybrid gray wolf optimizer for hyperspectral image band selection. IEEE Trans Geosci Remote Sens. 2022;60:1–13. Art no. 5527713.
  • Heidari AA, Mirjalili S, Faris H, et al. Harris hawks optimization: algorithm and applications. Future Gener Comput Syst. 2019;97:849–872.
  • Liu W, Lee J. A 3-D atrous convolution neural network for hyperspectral image denoising. IEEE Trans Geosci Remote Sens. 2019;57(8):5701–5715.
  • Chen Y, Shi K, Ge Y, et al. Spatiotemporal remote sensing image fusion using multiscale Two-stream convolutional neural networks. IEEE Trans Geosci Remote Sens. 2022;60:1–12.
  • Tan Z, Gao M, Li X, et al. A flexible reference-insensitive spatiotemporal fusion model for remote sensing images using conditional generative adversarial network. IEEE Trans Geosci Remote Sens. 2022;60:1–13.
  • Zhang X, Cheng S, Wang L, et al. Asymmetric cross-attention hierarchical network based on CNN and transformer for bitemporal remote sensing images change detection. IEEE Trans Geosci Remote Sens. 2023;61:1–15.
  • Jha A, Bose S, Banerjee B. GAF-Net: improving the performance of remote sensing image fusion using novel global self and cross attention learning. Proceedings of the IEEE/CVF winter conference on applications of computer vision (WACV). 2023. p 6354–6363.
  • Hou Z, Lv K, Gong X, et al. A remote sensing image fusion method combining low-level visual features and parameter-adaptive dual-channel pulse-coupled neural network. Remote Sens (Basel). 2023;15(2):344.
  • Kim AR, Kim HS, Kang CH, et al. The design of the 1D CNN–GRU network based on the RCS for classification of multiclass missiles. Remote Sens (Basel). 2023;15(3):577.
  • Kao S-P, Chang Y-C, Wang F-L. Combining the YOLOv4 deep learning model with UAV imagery processing technology in the extraction and quantization of cracks in bridges. Sensors. 2023;23(5):2572.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.