168
Views
10
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

17β-Estradiol improves osteoblastic cell function through the Sirt1/NF-κB/MMP-8 pathway

, , , , &
Pages 404-409 | Received 08 Mar 2020, Accepted 15 Apr 2020, Published online: 15 May 2020

References

  • Diab DL, Watts NB. Postmenopausal osteoporosis. Curr Opin Endocrinol Diabetes Obes 2013;20:501–9
  • Boonen S, Ferrari S, Miller PD, et al. Postmenopausal osteoporosis treatment with antiresorptives: effects of discontinuation or long-term continuation on bone turnover and fracture risk–a perspective. J Bone Miner Res 2012;27:963–74
  • Black DM, Rosen CJ. Postmenopausal osteoporosis. N Engl J Med 2016;374:254–7
  • Cosman F, Nieves JW, Dempster DW. Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res 2017;32:198–202
  • Eastell R, O'Neill TW, Hofbauer LC, et al. Postmenopausal osteoporosis. Nat Rev Dis Primers 2016;2:16069
  • Liu L, Zhou L, Yang X, et al. 17beta-estradiol attenuates ovariectomyinduced bone deterioration through the suppression of the ephA2/ephrinA2 signaling pathway. Mol Med Report 2017;Jan17:1609–16
  • Medina-Estrada I, Alva-Murillo N, Lopez-Meza JE, et al. Immunomodulatory effects of 17beta-estradiol on epithelial cells during bacterial infections. J Immunol Res 2018;2018:1–11
  • Levin VA, Jiang X, Kagan R. Estrogen therapy for osteoporosis in the modern era. Osteoporos Int 2018;29:1049–55
  • Nadkarni S, McArthur S. Oestrogen and immunomodulation: new mechanisms that impact on peripheral and central immunity. Curr Opin Pharmacol 2013;13:576–81
  • Zhou S, Turgeman G, Harris SE, et al. Estrogens activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells. Mol Endocrinol 2003;17:56–66
  • Bendale DS, Karpe PA, Chhabra R, et al. 17-beta Oestradiol prevents cardiovascular dysfunction in post-menopausal metabolic syndrome by affecting SIRT1/AMPK/H3 acetylation. Br J Pharmacol 2013;170:779–95
  • Kauppinen A, Suuronen T, Ojala J, et al. Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signall 2013;25:1939–48
  • Paiva KBS, Granjeiro JM. Matrix metalloproteinases in bone resorption, remodeling, and repair. Prog Mol Biol Transl Sci 2017;148:203–303
  • Sasano Y, Zhu JX, Tsubota M, et al. Gene expression of MMP8 and MMP13 during embryonic development of bone and cartilage in the rat mandible and hind limb. J Histochem Cytochem 2002;50:325–32
  • Gursoy M, Zeidan-Chulia F, Kononen E, et al. Pregnancy-induced gingivitis and OMICS in dentistry: in silico modeling and in vivo prospective validation of estradiol-modulated inflammatory biomarkers. OMICS 2014;18:582–90
  • Kucukalic-Selimovic E, Valjevac A, Hadzovic-Dzuvo A. The utility of procollagen type 1 N-terminal propeptide for the bone status assessment in postmenopausal women. Bosn J Basic Med Sci 2013;13:259–65
  • Mukaiyama K, Kamimura M, Uchiyama S, et al. Elevation of serum alkaline phosphatase (ALP) level in postmenopausal women is caused by high bone turnover. Aging Clin Exp Res 2015;27:413–18
  • Kuo TR, Chen CH. Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomark Res 2017;5:18
  • Munasinghe A, Lin P, Colina CM. Unraveling binding interactions between human RANKL and its decoy receptor osteoprotegerin. J Phys Chem B 2017;121:9141–8
  • Price CP. Multiple forms of human serum alkaline phosphatase: detection and quantitation. Ann Clin Biochem 1993;30:355–72
  • Choi SE, Kemper JK. Regulation of SIRT1 by microRNAs. Mol Cells 2013;36:385–92
  • Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol Mech Dis 2010;5:253–95
  • Yao H, Rahman I. Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence. Biochem Pharmacol 2012;84:1332–9
  • Backesjo CM, Li Y, Lindgren U, et al. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J Bone Miner Res 2006;21:993–1002
  • Wang Y, Liang Y, Vanhoutte PM. SIRT1 and AMPK in regulating mammalian senescence: a critical review and a working model. FEBS Letters 2011; Apr 6585:986–94
  • Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. FEBS Lett 2011;585:986–94
  • Chen Y, Wang J, Pan C, et al. Microcystin-leucine-arginine causes blood-testis barrier disruption and degradation of occludin mediated by matrix metalloproteinase-8. Cell Mol Life Sci 2018;75:1117–32
  • Varghese S. Matrix metalloproteinases and their inhibitors in bone: an overview of regulation and functions. Front Biosci 2006;11:2949–66
  • Holliday LS, Welgus HG, Fliszar CJ, et al. Initiation of osteoclast bone resorption by interstitial collagenase. J Biol Chem 1997;272:22053–8
  • Kim J, Jeong YH, Lee EJ, et al. Suppression of neuroinflammation by matrix metalloproteinase-8 inhibitor in aged normal and LRRK2 G2019S Parkinson’s disease model mice challenged with lipopolysaccharide. Biochem Biophys Res Commun 2017;493:879–86
  • Lenglet S, Mach F, Montecucco F. Role of matrix metalloproteinase-8 in atherosclerosis. Mediators Inflamm 2013;2013:659282
  • Vassilev V, Pretto CM, Cornet PB, et al. Response of matrix metalloproteinases and tissue inhibitors of metalloproteinases messenger ribonucleic acids to ovarian steroids in human endometrial explants mimics their gene- and phase-specific differential control in vivo. J Clin Endocrinol Metab 2005;90:5848–57
  • Mieczkowska J, Rutkowska E, Mosiewicz J, et al. Relationship between serum levels of metalloproteinase-8 and tissue inhibitor of metalloproteinases-1 and exercise test results in postmenopausal women. Dis Markers 2016;2016:1–6
  • Feng J, Liu S, Ma S, et al. Protective effects of resveratrol on postmenopausal osteoporosis: Regulation of SIRT1-NF-kappaB signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2014;46:1024–33
  • Zainabadi K, Liu CJ, Guarente L. SIRT1 is a positive regulator of the master osteoblast transcription factor, RUNX2. PLoS One 2017;12:e0178520
  • Gong K, Qu B, Wang C, et al. Peroxisome proliferator-activated receptor α facilitates osteogenic differentiation in MC3T3-E1 cells via the sirtuin 1-dependent signaling pathway. Mol Cells 2017;40:393–400

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.