433
Views
2
CrossRef citations to date
0
Altmetric
Reviews

It starts from the womb: maximizing bone health

, & ORCID Icon
Pages 11-21 | Received 06 Jun 2021, Accepted 21 Nov 2021, Published online: 07 Jan 2022

References

  • NIH consensus development panel on osteoporosis prevention, diagnosis, and therapy osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–795.
  • Bailey DA, McKay HA, Mirwald RL, et al. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14(10):1672–1679.
  • Hernandez CJ, Beaupré GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14(10):843–847.
  • Viljakainen HT, Saarnio E, Hytinantti T, et al. Maternal vitamin D status determines bone variables in the newborn. J Clin Endocrinol Metab. 2010;95(4):1749–1757.
  • Harrington J, Perumal N, Al Mahmud A, et al. Vitamin D and fetal-neonatal calcium homeostasis: findings from a randomized controlled trial of high-dose antenatal vitamin D supplementation. Pediatr Res. 2014;76(3):302–309.
  • Trotter M, Hixon BB. Sequential changes in weight, density, and percentage ash weight of human skeletons from an early fetal period through old age. Anat Rec. 1974;179(1):1–18.
  • Bonnard GD. Cortical thickness and diaphysial diameter of the metacarpal bones from the age of three months to eleven years. Helv Paediatr Acta. 1968;23(5):445–463.
  • Stettner E. 1931 Ossificationsstudien am Handskelet. III. Die physiologische Osteoporose. Z Kinder-Heilk. 1931;52(1):1–13.
  • Bachrach LK. Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol Metab. 2001;12(1):22–28.
  • Carey DE, Golden NH. Bone health in adolescence. Adolesc Med State Art Rev. 2015;26(2):291–325.
  • Kawai M, Rosen CJ. The insulin-like growth factor system in bone: basic and clinical implications. Endocrinol Metab Clin North Am. 2012;41(2):323–333.
  • Holroyd C, Harvey N, Dennison E, et al. Epigenetic influences in the developmental origins of osteoporosis. Osteoporos Int. 2012;23(2):401–410.
  • Bachrach LK. Assessing bone health in children: who to test and what does it mean? Pediatr Endocrinol Rev. 2005;2(Suppl 3):332–336.
  • Van Wyk JJ, Smith EP. Insulin-like growth factors and skeletal growth: possibilities for therapeutic interventions. J Clin Endocrinol Metab. 1999;84(12):4349–4354.
  • Le Roith D, Butler AA. Insulin-like growth factors in pediatric health and disease. J Clin Endocrinol Metab. 1999;84(12):4355–4361.
  • Ammann P, Bourrin S, Bonjour JP, et al. Protein undernutrition-induced bone loss is associated with decreased IGF-I levels and estrogen deficiency. J Bone Miner Res. 2000;15(4):683–690.
  • Lloyd T, Andon MB, Rollings N, et al. Calcium supplementation and bone mineral density in adolescent girls. JAMA. 1993;270(7):841–844.
  • Weise M, De-Levi S, Barnes KM, et al. Effects of estrogen on growth plate senescence and epiphyseal fusion. Proc Natl Acad Sci USA. 2001;98(12):6871–6876.
  • Yilmaz D, Ersoy B, Bilgin E, et al. Bone mineral density in girls and boys at different pubertal stages: relation with gonadal steroids, bone formation markers, and growth parameters. J Bone Miner Metab. 2005;23(6):476–482.
  • Lamberg-Allardt C. Vitamin D in children and adolescents. Scand J Clin Lab Invest Suppl. 2012;243:124–128.
  • Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–58.
  • Turner JG, Gilchrist NL, Ayling EM, et al. Factors affecting bone mineral density in high school girls. N Z Med J. 1992;105(930):95–96.
  • Ganpule A, Yajnik CS, Fall CH, et al. Bone mass in Indian children—relationships to maternal nutritional status and diet during pregnancy: the Pune Maternal Nutrition Study. J Clin Endocrinol Metab. 2006;91(8):2994–3001.
  • Jensen KH, Riis KR, Abrahamsen B, et al. Nutrients, diet, and other factors in prenatal life and bone health in young adults: a systematic review of longitudinal studies. Nutrients. 2020;12(9):2866.
  • Hyde NK, Brennan-Olsen SL, Wark JD, et al. Maternal vitamin D and offspring trabecular bone score. Osteoporos Int. 2017;28(12):3407–3414.
  • Zhu K, Whitehouse AJ, Hart PH, et al. Maternal vitamin D status during pregnancy and bone mass in offspring at 20 years of age: a prospective cohort study. J Bone Miner Res. 2014;29(5):1088–1095.
  • Moon RJ, Curtis EM, Woolford SJ, et al. The importance of maternal pregnancy vitamin D for offspring bone health: learnings from the MAVIDOS trial. Ther Adv Musculoskelet Dis. 2021;13:1759720X211006979.
  • Brustad N, Garland J, Thorsen J, et al. Effect of high-dose vs standard-dose vitamin d supplementation in pregnancy on bone mineralization in offspring until age 6 years: a prespecified secondary analysis of a double-blinded, randomized clinical trial. JAMA Pediatr. 2020;174(5):419–427.
  • Palacios C, Kostiuk LK, Peña-Rosas JP. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev. 2019;(7):CD008873.
  • Hollis BW, Wagner CL. Vitamin D requirements and supplementation during pregnancy. Curr Opin Endocrinol Diabetes Obes. 2011;18(6):371–375.
  • Enkhmaa D, Tanz L, Ganmaa D, et al. Randomized trial of three doses of vitamin D to reduce deficiency in pregnant Mongolian women. EbioMedicine. 2019;39:510–519.
  • Balasuriya CND, Larose TL, Mosti MP, et al. Maternal serum retinol, 25(OH)D and 1,25(OH)2D concentrations during pregnancy and peak bone mass and trabecular bone score in adult offspring at 26-year follow-up. PloS One. 2019;14(9):e0222712.
  • Händel MN, Moon RJ, Titcombe P, et al. Maternal serum retinol and β-carotene concentrations and neonatal bone mineralization: results from the Southampton Women’s Survey cohort. Am J Clin Nutr. 2016;104(4):1183–1188.
  • World Health Organization. Guideline: Vitamin a supplementation in pregnant women. Geneva: World Health Organization; 2011.
  • Parviainen R, Auvinen J, Serlo W, et al. Maternal alcohol consumption during pregnancy associates with bone fractures in early childhood. A birth-cohort study of 6718 participants. Bone. 2020;137:115462.
  • Baradaran Mahdavi S, Daniali SS, Farajzadegan Z, et al. Association between maternal smoking and child bone mineral density: a systematic review and meta-analysis. Environ Sci Pollut Res Int. 2020;27(19):23538–23549.
  • Brand JS, Hiyoshi A, Cao Y, et al. Maternal smoking during pregnancy and fractures in offspring: national register based sibling comparison study. BMJ. 2020;368:l7057.
  • Yang Y, Wu F, Dwyer T, et al. Associations of breastfeeding, maternal smoking, and birth weight with bone density and microarchitecture in young adulthood: a 25-year birth-cohort study. J Bone Miner Res. 2020;35(9):1652–1659.
  • Schushan-Eisen I, Cohen M, Leibovitch L, et al. Bone density among infants of gestational diabetic mothers and macrosomic neonates. Matern Child Health J. 2015;19(3):578–582.
  • Hannam K, Lawlor DA, Tobias JH. Maternal preeclampsia is associated with reduced adolescent offspring hip BMD in a UK population-based birth cohort. J Bone Miner Res. 2015;30(9):1684–1691.
  • Miettola S, Hovi P, Andersson S, et al. Maternal preeclampsia and bone mineral density of the adult offspring. Am J Obstet Gynecol. 2013;209(5):443.e1–443.e10.
  • McKinlay CJD, Cutfield WS, Battin MR, et al. ACTORDS follow-up group. Mid-childhood bone mass after exposure to repeat doses of antenatal glucocorticoids: a randomized trial. Pediatrics. 2017;139(5):e20164250.
  • Crowther CA, Middleton PF, Voysey M, et al. Effects of repeat prenatal corticosteroids given to women at risk of preterm birth: an individual participant data Meta-analysis. PloS Med. 2019;16(4):e1002771.
  • Ireland A, Crozier SR, Heazell AEP, et al. Breech presentation is associated with lower bone mass and area: findings from the Southampton Women’s Survey. Osteoporos Int. 2018;29(10):2275–2281.
  • Baird J, Kurshid MA, Kim M, et al. Does birthweight predict bone mass in adulthood? A systematic review and meta-analysis. Osteoporos Int. 2011;22(5):1323–1334.
  • Martínez-Mesa J, Restrepo-Méndez MC, González DA, et al. Life-course evidence of birth weight effects on bone mass: systematic review and meta-analysis. Osteoporos Int. 2013;24(1):7–18.
  • Evensen E, Skeie G, Wilsgaard T, et al. How is adolescent bone mass and density influenced by early life body size and growth? The Tromsø study: fit futures-A longitudinal cohort study from Norway. JBMR Plus. 2018;2(5):268–280.
  • Mitchell DM, Jüppner H. Regulation of calcium homeostasis and bone metabolism in the fetus and neonate. Curr Opin Endocrinol Diabetes Obes. 2010;17(1):25–30.
  • Lee WT, Leung SS, Leung DM, et al. Bone mineral acquisition in low calcium intake children following the withdrawal of calcium supplement. Acta Paediatr. 1997;86(6):570–576.
  • NIH releases consensus statement on optimal calcium intake. Am Fam Physician. 1994;50(6):1385–1387.
  • Hazell TJ, DeGuire JR, Weiler HA. Vitamin D: an overview of its role in skeletal muscle physiology in children and adolescents. Nutr Rev. 2012;70(9):520–533.
  • Saggese G, Vierucci F, Boot AM, et al. Vitamin D in childhood and adolescence: an expert position statement. Eur J Pediatr. 2015;174(5):565–576.
  • Loprinzi PD, Cardinal BJ, Loprinzi KL, et al. Benefits and environmental determinants of physical activity in children and adolescents. Obes Facts. 2012;5(4):597–610.
  • Tenforde AS, Fredericson M. Influence of sports participation on bone health in the young athlete: a review of the literature. Pm R. 2011;3(9):861–867.
  • Gunter KB, Almstedt HC, Janz KF. Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exerc Sport Sci Rev. 2012;40(1):13–21.
  • Theintz G, Buchs B, Rizzoli R, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75(4):1060–1065.
  • Lu PW, Cowell CT, Lloyd-Jones SA, et al. Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab. 1996;81(4):1586–1590.
  • Cadogan J, Blumsohn A, Barker ME, et al. A longitudinal study of bone gain in pubertal girls: anthropometric and biochemical correlates. J Bone Miner Res. 2009;13(10):1602–1612.
  • Seeman E. Clinical review 137: sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab. 2001;86(10):4576–4584.
  • Chew CK, Clarke BL. Causes of low peak bone mass in women. Maturitas. 2018;111:61–68.
  • Soyka LA, Fairfield WP, Klibanski A. Hormonal determinants and disorders of peak bone mass in children. J Clin Endocrinol Metab. 2000;85(11):3951–3963.
  • Sainz J, Van Tornout JM, Loro ML, Sayre J, et al. Vitamin D-receptor gene polymorphisms and bone density in prepubertal American girls of Mexican descent. N Engl J Med. 1997;337(2):77–82.
  • Gong G, Stern HS, Cheng SC, et al. The association of bone mineral density with vitamin D receptor gene polymorphisms. Osteoporos Int. 1999;9(1):55–64.
  • Sano M, Inoue S, Hosoi T, et al. Association of estrogen receptor dinucleotide repeat polymorphism with osteoporosis. Biochem Biophys Res Commun. 1995;217(1):378–383.
  • Erdogan MO, Yıldız H, Artan S, et al. Association of estrogen receptor alpha and collagen type I alpha 1 gene polymorphisms with bone mineral density in postmenopausal women. Osteoporos Int. 2011;22(4):1219–1225.
  • Mann V, Ralston SH. Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone. 2003;32(6):711–717.
  • Ralston SH, Uitterlinden AG. Genetics of osteoporosis. Endocr Rev. 2010;31(5):629–662.
  • Gravholt CH, Andersen NH, Conway GS, et al. Clinical practice guidelines for the care of girls and women with Turner syndrome: proceedings from the 2016 Cincinnati International Turner Syndrome Meeting. Eur J Endocrinol. 2017;177(3):G1–g70.
  • Ferlin A, Schipilliti M, Di Mambro A, et al. Osteoporosis in Klinefelter’s syndrome. Mol Hum Reprod. 2010;16(6):402–410.
  • Ferlin A, Schipilliti M, Vinanzi C, et al. Bone mass in subjects with Klinefelter syndrome: role of testosterone levels and androgen receptor gene CAG polymorphism. J Clin Endocrinol Metab. 2011;96(4):E739–E745.
  • Henderson RC, Lark RK, Gurka MJ, et al. Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics. 2002;110(1):e5–e5.
  • Bianchi ML, Mazzanti A, Galbiati E, et al. Bone mineral density and bone metabolism in duchenne muscular dystrophy. Osteoporos Int. 2003;14(9):761–767.
  • Nicholas JM, Ridsdale L, Richardson MP, et al. Fracture risk with use of liver enzyme inducing antiepileptic drugs in people with active epilepsy: cohort study using the general practice research database. Seizure. 2013;22(1):37–42.
  • White CM, Hergenroeder AC, Klish WJ. Bone mineral density in 15- to 21-year-old eumenorrheic and amenorrheic subjects. Am J Dis Child. 1992;146(1):31–35.
  • Warren MP, Brooks-Gunn J, Fox RP, et al. Lack of bone accretion and amenorrhea: evidence for a relative osteopenia in weight-bearing bones. J Clin Endocrinol Metab. 1991;72(4):847–853.
  • Hergenroeder AC. Bone mineralization, hypothalamic amenorrhea, and sex steroid therapy in female adolescents and young adults. J Pediatr. 1995;126(5):683–689.
  • Fazeli PK, Klibanski A. Effects of anorexia nervosa on bone metabolism. Endocr Rev. 2018;39(6):895–910.
  • Saggese G, Baroncelli GI, Bertelloni S, et al. The effect of long-term growth hormone (GH) treatment on bone mineral density in children with GH deficiency. Role of GH in the attainment of peak bone mass. J Clin Endocrinol Metab. 1996;81:3077–3083.
  • Improda N, Capalbo D, Esposito A, et al. Muscle and skeletal health in children and adolescents with GH deficiency. Best Pract Res Clin Endocrinol Metab. 2016;30(6):771–783.
  • Koranyi J, Svensson J, Götherström G, et al. Baseline characteristics and the effects of five years of GH replacement therapy in adults with GH deficiency of childhood or adulthood onset: a comparative, prospective study. J Clin Endocrinol Metab. 2001;86(10):4693–4699.
  • Leong GM, Abad V, Charmandari E, et al. Effects of child- and adolescent-onset endogenous cushing syndrome on bone mass, body composition, and growth: a 7-year prospective study into young adulthood. J Bone Miner Res. 2007;22(1):110–118.
  • Lodish MB, Hsiao H-P, Serbis A, et al. Effects of Cushing disease on bone mineral density in a pediatric population. J Pediatrics. 2010;156(6):1001–1005.
  • Tuchendler D, Bolanowski M. The influence of thyroid dysfunction on bone metabolism. Thyroid Res. 2014;7(1):12.
  • Kindler JM, Kelly A, Khoury PR, et al. Bone mass and density in youth with type 2 diabetes, obesity, and healthy weight. Dia Care. 2020;43(10):2544–2552.
  • Hygum K, Starup-Linde J, Harsløf T, et al. Mechanisms in endocrinology: diabetes mellitus, a state of low bone turnover – a systematic review and meta-analysis. Eur J Endocrinol. 2017;176(3):R137–R157.
  • Kalaitzoglou E, Popescu I, Bunn RC, et al. Effects of type 1 diabetes on osteoblasts, osteocytes, and osteoclasts. Curr Osteoporos Rep. 2016;14(6):310–319.
  • Wierzbicka E, Swiercz A, Pludowski P, et al. Skeletal status, body composition, and glycaemic control in adolescents with type 1 diabetes mellitus. J Diabetes Res. 2018;2018:1–14.
  • Parthasarathy LS, Khadilkar VV, Chiplonkar SA, et al. Bone status of Indian children and adolescents with type 1 diabetes mellitus. Bone. 2016;82:16–20.
  • Burghardt AJ, Issever AS, Schwartz AV, et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95(11):5045–5055.
  • Ho-Pham LT, Chau PMN, Do AT, et al. Type 2 diabetes is associated with higher trabecular bone density but lower cortical bone density: the Vietnam Osteoporosis Study. Osteoporos Int. 2018;29(9):2059–2067.
  • Soyka LA, Misra M, Frenchman A, et al. Abnormal bone mineral accrual in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab. 2002;87(9):4177–4185.
  • Misra M, Klibanski A. Endocrine consequences of anorexia nervosa. Lancet Diabetes Endocrinol. 2014;2(7):581–592.
  • Laakso S, Valta H, Verkasalo M, et al. Compromised peak bone mass in patients with inflammatory bowel disease–a prospective study. J Pediatrics. 2014;164(6):1436–1443.e1.
  • Ley D, Duhamel A, Behal H, et al. Growth pattern in paediatric crohn disease is related to inflammatory status. J Pediatr Gastroenterol Nutr. 2016;63(6):637–643.
  • Pappa H, Thayu M, Sylvester F, et al. Skeletal health of children and adolescents with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2011;53(1):11–25.
  • Valentine JF, Sninsky CA. Prevention and treatment of osteoporosis in patients with inflammatory bowel disease. Am J Gastroenterol. 1999;94(4):878–883.
  • Alos N, Grant RM, Ramsay T, et al. High incidence of vertebral fractures in children with acute lymphoblastic leukemia 12 months after the initiation of therapy. J Clin Oncol. 2012;30(22):2760–2767.
  • Halton J, Gaboury I, Grant R, et al. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: results of the Canadian Steroid-Associated osteoporosis in the pediatric population (STOPP) research program. J Bone Miner Res. 2009;24(7):1326–1334.
  • Marcucci G, Beltrami G, Tamburini A, et al. Bone health in childhood cancer: review of the literature and recommendations for the management of bone health in childhood cancer survivors. Ann Oncol. 2019;30(6):908–920.
  • Utman MS, Anabtawi A, Le T, et al. Cystic fibrosis bone disease treatment: current knowledge and future directions. J Cystic Fibrosis. 2019;18:S56–S65.
  • Fink CW. Proposal for the development of classification criteria for idiopathic arthritides of childhood. J Rheumatol. 1995;22(8):1566–1569.
  • Burnham JM, Shults J, Dubner SE, et al. Bone density, structure, and strength in juvenile idiopathic arthritis: importance of disease severity and muscle deficits. Arthritis Rheum. 2008;58(8):2518–2527.
  • Stagi S, Cavalli L, Signorini C, et al. Bone mass and quality in patients with juvenile idiopathic arthritis: longitudinal evaluation of bone-mass determinants by using dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and quantitative ultrasonography. Arthritis Res Ther. 2014;16(2):R83.
  • Whyte MP, Zhang F, Wenkert D, et al. Hypophosphatasia: vitamin B6 status of affected adults and children. Bone. 2022;154:116204.
  • Nur BG, Nur H, Mihci E. Bone mineral density in patients with mucopolysaccharidosis type III. J Bone Miner Metab. 2017;35(3):338–343.
  • Oussoren E, Brands MMMG, Ruijter GJG, et al. Bone, joint and tooth development in mucopolysaccharidoses: relevance to therapeutic options. Biochim Biophys Acta. 2011;1812(11):1542–1556.
  • Weber DR, Coughlin C, Brodsky JL, et al. Low bone mineral density is a common finding in patients with homocystinuria. Mol Genet Metab. 2016;117(3):351–354.
  • Kodama H, Fujisawa C, Bhadhprasit W. Inherited copper transport disorders: biochemical mechanisms, diagnosis, and treatment. Curr Drug Metab. 2012;13(3):237–250.
  • Parto K, Penttinen R, Paronen I, et al. Osteoporosis in lysinuric protein intolerance. J Inherit Metab Dis. 1993;16(2):441–450.
  • Forlino A, Marini JC. Osteogenesis imperfecta. Lancet. 2016;387(10028):1657–1671.
  • Marom R, Rabenhorst BM, Morello R. Osteogenesis imperfecta: an update on clinical features and therapies. Eur J Endocrinol. 2020;183(4):R95–R106.
  • Weinstein RS, Jilka RL, Parfitt AM, et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102(2):274–282.
  • Klein RG, Arnaud SB, Gallagher JC, et al. Intestinal calcium absorption in exogenous hypercortisonism. Role of 25-hydroxyvitamin D and corticosteroid dose. J Clin Invest. 1977;60(1):253–259.
  • Ritz E, Kreusser W, Rambausek M. Effects of glucocorticoids on calcium and phosphate excretion. Adv Exp Med Biol. 1984;171:381–397.
  • Chrousos GP, Torpy DJ, Gold PW. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med. 1998;129(3):229–240.
  • Rauch F, Travers R, Norman ME, et al. The bone formation defect in idiopathic juvenile osteoporosis is surface-specific. Bone. 2002;31(1):85–89.
  • Krassas GE. Idiopathic juvenile osteoporosis. Ann NY Acad Sci. 2000;900:409–412.
  • van Meurs JBJ, Boer CG, Lopez-Delgado L, et al. Role of epigenomics in bone and cartilage disease. J Bone Miner Res. 2019;34(2):e3662–230.
  • Feinberg AP. The key role of epigenetics in human disease prevention and mitigation. N Engl J Med. 2018;378(14):1323–1334.
  • Yaşar E, Adigüzel E, Arslan M, et al. Basics of bone metabolism and osteoporosis in common pediatric neuromuscular disabilities. Eur J Paediatr Neurol. 2018;22(1):17–26.
  • González L, Nazario CM, González MJ. Nutrition-related problems of pediatric patients with neuromuscular disorders. P R Health Sci J. 2000;19:35–38.
  • Kim SJ, Kim SN, Yang YN, et al. Effect of weight bearing exercise to improve bone mineral density in children with cerebral palsy: a meta-analysis. J Musculoskeletal Neuronal Interact. 2017;17(4):334–340.
  • Fouda MA, Khan AA, Sultan MS, et al. Evaluation and management of skeletal health in celiac disease: position statement. Can J Gastroenterol. 2012;26(11):819–829.
  • Strand V, Kavanaugh AF. The role of interleukin-1 in bone resorption in rheumatoid arthritis. Rheumatology. 2004;43(suppl_3):iii10–iii6.
  • Cleary AG, Lancaster GA, Annan F, et al. Nutritional impairment in juvenile idiopathic arthritis. Rheumatology. 2004;43(12):1569–1573.
  • Roth J, Linge M, Tzaribachev N, et al. Musculoskeletal abnormalities in juvenile idiopathic arthritis-a 4-year longitudinal study. Rheumatology. 2007;46(7):1180–1184.
  • Celiker R, Bal S, Bakkaloğlu A, et al. Factors playing a role in the development of decreased bone mineral density in juvenile chronic arthritis. Rheumatol Int. 2003;23(3):127–129.
  • Wilson CL, Ness KK. Bone mineral density deficits and fractures in survivors of childhood cancer. Curr Osteoporos Rep. 2013;11(4):329–337.
  • Han JW, Kim HS, Hahn SM, et al. Poor bone health at the end of puberty in childhood cancer survivors. Pediatr Blood Cancer. 2015;62(10):1838–1843.
  • Goshtasebi A, Subotic Brajic T, Scholes D, et al. Adolescent use of combined hormonal contraception and peak bone mineral density accrual: a meta-analysis of international prospective controlled studies. Clin Endocrinol. 2019;90(4):517–524.
  • Lopez LM, Chen M, Mullins Long S, et al. Steroidal contraceptives and bone fractures in women: evidence from observational studies. Cochrane Database Syst Rev. 2015;21(7):CD009849.
  • Bachrach LK. Hormonal contraception and bone health in adolescents. Front Endocrinol. 2020;11:603.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.