1,410
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular mechanism of triptolide in myocardial fibrosis through the Wnt/β-catenin signaling pathway

&
Article: 2295785 | Received 16 May 2023, Accepted 12 Dec 2023, Published online: 02 Jan 2024

References

  • Chen P, Zhou D, Liu Y, et al. Peiminine inhibits myocardial injury and fibrosis after myocardial infarction in rats by regulating mitogen-activated protein kinase pathway. Korean J Physiol Pharmacol. 2022;26(2):87–94. doi: 10.4196/kjpp.2022.26.2.87.
  • Li G, Zhao C, Fang S. SGLT2 promotes cardiac fibrosis following myocardial infarction and is regulated by miR-141. Exp Ther Med. 2021;22(1):715. doi: 10.3892/etm.2021.10147.
  • Tallquist MD. Cardiac fibroblast diversity. Annu Rev Physiol. 2020;82(1):63–78. doi: 10.1146/annurev-physiol-021119-034527.
  • Frangogiannis NG. Cardiac fibrosis. Cardiovasc Res. 2021;117(6):1450–1488. doi: 10.1093/cvr/cvaa324.
  • Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res. 2016;365(3):563–581. doi: 10.1007/s00441-016-2431-9.
  • Liang B, Zhang XX, Li R, et al. Guanxin V alleviates acute myocardial infarction by restraining oxidative stress damage, apoptosis, and fibrosis through the TGF-beta1 signalling pathway. Phytomedicine. 2022;100:154077. doi: 10.1016/j.phymed.2022.154077.
  • Zhang X, Shao C, Cheng S, et al. Effect of guanxin V in animal model of acute myocardial infarction. BMC Complement Med Ther. 2021;21(1):72. doi: 10.1186/s12906-021-03211-7.
  • Liu Q. Triptolide and its expanding multiple pharmacological functions. Int Immunopharmacol. 2011;11(3):377–383. doi: 10.1016/j.intimp.2011.01.012.
  • Yu H, Shi L, Zhao S, et al. Triptolide attenuates myocardial ischemia/reperfusion injuries in rats by inducing the activation of Nrf2/HO-1 defense pathway. Cardiovasc Toxicol. 2016;16(4):325–335. doi: 10.1007/s12012-015-9342-y.
  • Wang K, Zhu K, Zhu Z, et al. Triptolide with hepatotoxicity and nephrotoxicity used in local delivery treatment of myocardial infarction by thermosensitive hydrogel. J Nanobiotechnology. 2023;21(1):227. doi: 10.1186/s12951-023-01980-6.
  • Zhang Z, Qu X, Ni Y, et al. Triptolide protects rat heart against pressure overload-induced cardiac fibrosis. Int J Cardiol. 2013;168(3):2498–2505. doi: 10.1016/j.ijcard.2013.03.001.
  • Pan XC, Liu Y, Cen YY, et al. Dual role of triptolide in interrupting the NLRP3 inflammasome pathway to attenuate cardiac fibrosis. Int J Mol Sci. 2019;20(2):360.
  • Guo X, Xue M, Li CJ, et al. Protective effects of triptolide on TLR4 mediated autoimmune and inflammatory response induced myocardial fibrosis in diabetic cardiomyopathy. J Ethnopharmacol. 2016;193:333–344. doi: 10.1016/j.jep.2016.08.029.
  • Tao H, Yang JJ, Shi KH, et al. Wnt signaling pathway in cardiac fibrosis: new insights and directions. Metabolism. 2016;65(2):30–40. doi: 10.1016/j.metabol.2015.10.013.
  • Mizutani M, Wu JC, Nusse R. Fibrosis of the neonatal mouse heart after cryoinjury is accompanied by Wnt signaling activation and epicardial-to-mesenchymal transition. J Am Heart Assoc. 2016;5(3):e002457.
  • Zhao Y, Wang C, Wang C, et al. An essential role for Wnt/beta-catenin signaling in mediating hypertensive heart disease. Sci Rep. 2018;8(1):8996. doi: 10.1038/s41598-018-27064-2.
  • Zhao X, Hua Y, Chen H, et al. Aldehyde dehydrogenase-2 protects against myocardial infarction-related cardiac fibrosis through modulation of the Wnt/beta-catenin signaling pathway. Ther Clin Risk Manag. 2015;11:1371–1381. doi: 10.2147/TCRM.S88297.
  • Ding YY, Li JM, Guo FJ, et al. Triptolide upregulates myocardial forkhead helix transcription factor p3 expression and attenuates cardiac hypertrophy. Front Pharmacol. 2016;7:471. doi: 10.3389/fphar.2016.00471.
  • Song J, Zhu XM, Wei QY. MSCs reduce airway remodeling in the lungs of asthmatic rats through the Wnt/beta-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(21):11199–11211. doi: 10.26355/eurrev_202011_23608.
  • Chen MH, Liu JC, Liu Y, et al. MicroRNA-199a regulates myocardial fibrosis in rats by targeting SFRP5. Eur Rev Med Pharmacol Sci. 2019;23(9):3976–3983. doi: 10.26355/eurrev_201905_17827.
  • Wang Z, Wang Z, Gao L, et al. miR-222 inhibits cardiac fibrosis in diabetic mice heart via regulating Wnt/beta-catenin-mediated endothelium to mesenchymal transition. J Cell Physiol. 2020;235(3):2149–2160. doi: 10.1002/jcp.29119.
  • Liu Y, Gao L, Zhao X, et al. Saikosaponin a protects from pressure overload-induced cardiac fibrosis via inhibiting fibroblast activation or endothelial cell EndMT. Int J Biol Sci. 2018;14(13):1923–1934. doi: 10.7150/ijbs.27022.
  • Blyszczuk P, Müller-Edenborn B, Valenta T, et al. Transforming growth factor-β-dependent wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J. 2017;38(18):1413–1425. doi: 10.1093/eurheartj/ehw11627099262.
  • Rai V, Sharma P, Agrawal S, et al. Relevance of mouse models of cardiac fibrosis and hypertrophy in cardiac research. Mol Cell Biochem. 2017;424(1–2):123–145. doi: 10.1007/s11010-016-2849-0.
  • Chen SR, Dai Y, Zhao J, et al. A mechanistic overview of triptolide and celastrol, natural products from Tripterygium wilfordii Hook F. Front Pharmacol. 2018;9:104. doi: 10.3389/fphar.2018.00104.
  • López B, González A, Ravassa S, et al. Circulating biomarkers of myocardial fibrosis: the need for a reappraisal. J Am Coll Cardiol. 2015;65(22):2449–2456. doi: 10.1016/j.jacc.2015.04.026.
  • Wen HL, Liang ZS, Zhang R, et al. Anti-inflammatory effects of triptolide improve left ventricular function in a rat model of diabetic cardiomyopathy. Cardiovasc Diabetol. 2013;12(1):50. doi: 10.1186/1475-2840-12-50.
  • Borges-Canha M, Neves JS, Libanio D, et al. Association between nonalcoholic fatty liver disease and cardiac function and structure-a meta-analysis. Endocrine. 2019;66(3):467–476. doi: 10.1007/s12020-019-02070-0.
  • Banu Rupani N, Alijanpour M, Babazadeh K, et al. Effect of levothyroxine on cardiac function in children with subclinical hypothyroidism: a quasi-experimental study. Caspian J Intern Med. 2019;10(3):332–338.
  • Treibel TA, López B, González A, et al. Reappraising myocardial fibrosis in severe aortic stenosis: an invasive and non-invasive study in 133 patients. Eur Heart J. 2018;39(8):699–709. doi: 10.1093/eurheartj/ehx353.
  • Fu S, Li Y, Wu Y, et al. Icariside II improves myocardial fibrosis in spontaneously hypertensive rats by inhibiting collagen synthesis. J Pharm Pharmacol. 2020;72(2):227–235. doi: 10.1111/jphp.13190.
  • Wang QW, Yu XF, Xu HL, et al. Ginsenoside re improves isoproterenol-induced myocardial fibrosis and heart failure in rats. Evid Based Complement Alternat Med. 2019;2019:3714508. doi: 10.1155/2019/3714508.
  • Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549–574. doi: 10.1007/s00018-013-1349-6.
  • Tarbit E, Singh I, Peart JN, et al. Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Heart Fail Rev. 2019;24(1):1–15. doi: 10.1007/s10741-018-9720-1.
  • Liang B, Liang Y, Li R, et al. Integrating systematic pharmacology-based strategy and experimental validation to explore the synergistic pharmacological mechanisms of guanxin V in treating ventricular remodeling. Bioorg Chem. 2021;115:105187. doi: 10.1016/j.bioorg.2021.105187.
  • Shen J, Ma H, Wang C. Triptolide improves myocardial fibrosis in rats through inhibition of nuclear factor kappa B and NLR family pyrin domain containing 3 inflammasome pathway. Korean J Physiol Pharmacol. 2021;25(6):533–543. doi: 10.4196/kjpp.2021.25.6.533.
  • Fu WB, Wang WE, Zeng CY. Wnt signaling pathways in myocardial infarction and the therapeutic effects of wnt pathway inhibitors. Acta Pharmacol Sin. 2019;40(1):9–12. doi: 10.1038/s41401-018-0060-4.
  • Pan W, Xu Z. Triptolide mediates Wnt/beta-catenin signalling pathway to reduce cerebral ischemia-reperfusion injury in rats. Folia Neuropathol. 2020;58(4):324–333. doi: 10.5114/fn.2020.102435.