540
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hemodynamic gain index and risk of ventricular arrhythmias: a prospective cohort study

ORCID Icon, , &
Article: 2347289 | Received 10 Jan 2024, Accepted 20 Apr 2024, Published online: 29 Apr 2024

References

  • Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American college of cardiology/American heart association task force on clinical practice guidelines and the heart rhythm society. J Am Coll Cardiol. 2018;72(14):e91–e220. doi: 10.1016/j.jacc.2017.10.054.
  • Harris P, Lysitsas D. Ventricular arrhythmias and sudden cardiac death. BJA Educ. 2016;16(7):221–229. doi: 10.1093/bjaed/mkv056.
  • Ross R, Blair SN, Arena R, et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American heart association. Circulation. 2016;134(24):e653–e699. doi: 10.1161/CIR.0000000000000461.
  • Balady GJ, Arena R, Sietsema K, et al. Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American heart association. Circulation. 2010;122(2):191–225. doi: 10.1161/CIR.0b013e3181e52e69.
  • Guazzi M, Arena R, Halle M, et al. 2016 focused update: clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur Heart J. 2016;39(14):1144–1161. doi: 10.1093/eurheartj/ehw180.
  • Guazzi M, Adams V, Conraads V, et al. EACPR/AHA scientific statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2012;126(18):2261–2274. doi: 10.1161/CIR.0b013e31826fb946.
  • Laukkanen JA, Isiozor NM, Kunutsor SK. Objectively assessed cardiorespiratory fitness and all-cause mortality risk: an updated meta-analysis of 37 cohort studies involving 2,258,029 participants. Mayo Clin Proc. 2022;97(6):1054–1073. doi: 10.1016/j.mayocp.2022.02.029.
  • Kunutsor SK, Jae SY, Kurl S, et al. The interplay between systolic blood pressure, cardiorespiratory fitness, and mortality risk: a prospective cohort study. J Cardiopulm Rehabil Prev. 2023;43(3):222–224.
  • Laukkanen JA, Kunutsor SK, Yates T, et al. Prognostic relevance of cardiorespiratory fitness as assessed by submaximal exercise testing for all-cause mortality: a UK biobank prospective study. Mayo Clin Proc. 2020;95(5):867–878. doi: 10.1016/j.mayocp.2019.12.030.
  • Laukkanen JA, Lavie CJ, Khan H, et al. Cardiorespiratory fitness and the risk of serious ventricular arrhythmias: a prospective cohort study. Mayo Clin Proc. 2019;94(5):833–841. doi: 10.1016/j.mayocp.2018.11.027.
  • Vainshelboim B, Kokkinos P, Myers J. Prognostic value and clinical usefulness of the hemodynamic gain index in men. Am J Cardiol. 2019;124(4):644–649. doi: 10.1016/j.amjcard.2019.05.015.
  • Laukkanen JA, Isiozor NM, Willeit P, et al. Hemodynamic gain index is associated with cardiovascular mortality and improves risk prediction: a prospective cohort study. J Cardiopulm Rehabil Prev. 2023;43(5):368–376. doi: 10.1097/HCR.0000000000000777.
  • Laukkanen JA, Isiozor NM, Willeit P, et al. Haemodynamic gain index is associated with risk of sudden cardiac death and improves risk prediction: a cohort study. Cardiology. 2023;148(3):246–256. doi: 10.1159/000530637.
  • Vainshelboim B, Kokkinos P, Myers J. Hemodynamic gain index in women: a validation study. Int J Cardiol. 2020;308:15–19. doi: 10.1016/j.ijcard.2020.03.066.
  • Chaikijurajai T, Wu Y, Grodin JL, et al. Validation of prognostic value of the hemodynamic gain index in different groups of patients undergoing exercise stress testing. Am Heart J Plus. 2022;18. doi: 10.1016/j.ahjo.2022.100174.
  • Vainshelboim B, Myers J. Haemodynamic gain index and heart failure incidence – prognostic and preventive value. Eur J Prev Cardiol. 2023;30(13):1404–1411. doi: 10.1093/eurjpc/zwad236.
  • Kunutsor SK, Isiozor NM, Myers J, et al. Baseline and usual cardiorespiratory fitness and the risk of chronic kidney disease: a prospective study and meta-analysis of published observational cohort studies. Geroscience. 2023;45(3):1761–1774. doi: 10.1007/s11357-023-00727-3.
  • Lakka TA, Venäläinen JM, Rauramaa R, et al. Relation of leisure-time physical activity and cardiorespiratory fitness to the risk of acute myocardial infarction. N Engl J Med. 1994;330(22):1549–1554. doi: 10.1056/NEJM199406023302201.
  • Khan H, Kunutsor SK, Rauramaa R, et al. Long-term change in cardiorespiratory fitness in relation to atrial fibrillation and heart failure (from the kuopio ischemic heart disease risk factor study). Am J Cardiol. 2018;121(8):956–960. doi: 10.1016/j.amjcard.2018.01.003.
  • Khan H, Kunutsor S, Rauramaa R, et al. Cardiorespiratory fitness and risk of heart failure: a population-based follow-up study. Eur J Heart Fail. 2014;16(2):180–188. doi: 10.1111/ejhf.37.
  • Zaccardi F, Webb DR, Kurl S, et al. Inverse association between fasting plasma glucose and risk of ventricular arrhythmias. Diabetologia. 2015;58(8):1797–1802. doi: 10.1007/s00125-015-3646-0.
  • Therneau TM, Grambsch PM. Modeling survival data: extending the cox model. New York, NY: Springer; 2000.
  • Groenwold RH, Klungel OH, Grobbee DE, et al. Selection of confounding variables should not be based on observed associations with exposure. Eur J Epidemiol. 2011;26(8):589–593. doi: 10.1007/s10654-011-9606-1.
  • Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94(446):496–509. doi: 10.1080/01621459.1999.10474144.
  • Harrell FE, Jr., Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statist Med. 1996;15(4):361–387. doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4.
  • Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation. 2007;115(7):928–935. doi: 10.1161/CIRCULATIONAHA.106.672402.
  • Harrell FEJ. Regression modeling strategies. New York: Springer; 2001.
  • Pencina MJ, D'Agostino RB, Sr., D'Agostino RB, Jr., et al. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27(2):157–172. doi: 10.1002/sim.2929.
  • Pencina MJ, D'Agostino RB, Sr., Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30(1):11–21. doi: 10.1002/sim.4085.
  • Cook NR. Quantifying the added value of new biomarkers: how and how not. Diagn Progn Res. 2018;2(1):14. doi: 10.1186/s41512-018-0037-2.
  • Kerr KF, Wang Z, Janes H, et al. Net reclassification indices for evaluating risk prediction instruments: a critical review. Epidemiology. 2014;25(1):114–121. doi: 10.1097/EDE.0000000000000018.
  • Ye Y, Larrat EP, Caffrey AR. Algorithms used to identify ventricular arrhythmias and sudden cardiac death in retrospective studies: a systematic literature review. Ther Adv Cardiovasc Dis. 2018;12(2):39–51. doi: 10.1177/1753944717745493.
  • Tsai MJ, Tsai CH, Pan RC, et al. Validation of ICD-9-CM and ICD-10-CM diagnostic codes for identifying patients with out-of-Hospital cardiac arrest in a national health insurance claims database. Clin Epidemiol. 2022;14:721–730. doi: 10.2147/CLEP.S366874.