564
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Development and performance evaluation of a morphing wing design using shape memory polymer and composite corrugated structure

ORCID Icon
Pages 12-26 | Received 17 Aug 2021, Accepted 24 Feb 2022, Published online: 10 Mar 2022

References

  • Airoldi, A., G. Sala, L. A. Di Landro, P. Bettini, and A. Gilardelli. 2018. “Composite Corrugated Laminates for Morphing Applications.” In Morphing Wing Technologies, 247–276. ed: Elsevier.
  • Al Azzawi, W., M. M. Islam, J. Leng, F. Li, and J. A. Epaarachchi. 2017. “Quantitative and Qualitative Analyses of Mechanical Behavior and Dimensional Stability of Styrene-based Shape Memory Composites.” Journal of Intelligent Material Systems and Structures 28: 3115–3126. doi:10.1177/1045389X17705210.
  • Ameduri, S., and A. Concilio, “Morphing Wings Review: Aims, Challenges, and Current Open Issues of a Technology,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, p. 0954406220944423, 2020.
  • Arjomandi, M., S. Agostino, M. Mammone, M. Nelson, and T. Zhou. 2006. “Classification of Unmanned Aerial Vehicles.” In Report for Mechanical Engineering Class. Adelaide, Australia: University of Adelaide.
  • Bai, J., D. Chen, J. Xiong, and R. Shenoi. 2017. “A Corrugated Flexible Composite Skin for Morphing Applications.” Composites Part B: Engineering 131: 134–143. doi:10.1016/j.compositesb.2017.07.056.
  • Barbarino, S., E. S. Flores, R. M. Ajaj, I. Dayyani, and M. I. Friswell. 2014. “A Review on Shape Memory Alloys with Applications to Morphing Aircraft.” Smart Materials and Structures 23: 063001. doi:10.1088/0964-1726/23/6/063001.
  • Bashir, M., C. F. Lee, and P. Rajendran. 2017. “Shape Memory Materials and Their Applications in Aircraft Morphing: An Introspective Study.” J Eng Appl Sci 12: 50–56.
  • Dayyani, I., S. Ziaei-Rad, and M. I. Friswell. 2014. “The Mechanical Behavior of Composite Corrugated Core Coated with Elastomer for Morphing Skins.” Journal of Composite Materials 48: 1623–1636. doi:10.1177/0021998313488807.
  • Do Vale, J. L., F. Afonso, F. Lau, and A. Suleman. 2018. “Span Morphing Concept: An Overview.” In Morphing Wing Technologies, 125–144. ed: Elsevier.
  • Elshazly, T. M., L. Keilig, Y. Alkabani, A. Ghoneima, M. Abuzayda, S. Talaat, and C. P. Bourauel. 2021. “Primary Evaluation of Shape Recovery of Orthodontic Aligners Fabricated from Shape Memory Polymer (A Typodont Study).” Dentistry Journal 9: 31. doi:10.3390/dj9030031.
  • Emiliavaca, A., C. De Araújo, C. Souto, and A. Ries. 2018. “Characterization of Shape Memory Alloy Micro-springs for Application in Morphing Wings.” Smart Materials and Structures 28: 015010. doi:10.1088/1361-665X/aaeb80.
  • Ferreira, J. P., and R. De Breuker, “A Conceptual Development of A Shape Memory Alloy Actuated Variable Camber Morphing Wing,” in International Conference in Aerospace for Young Scientists, Beijing, China, 2016.
  • Gong, X., L. Liu, F. Scarpa, J. Leng, and Y. Liu. 2017. “Variable Stiffness Corrugated Composite Structure with Shape Memory Polymer for Morphing Skin Applications.” Smart Materials and Structures 26: 035052. doi:10.1088/1361-665X/aa516d.
  • Gong, X., F. Xie, L. Liu, Y. Liu, and J. Leng. 2020. “Electro-active Variable-Stiffness Corrugated Structure Based on Shape-Memory Polymer Composite.” Polymers 12: 387. doi:10.3390/polym12020387.
  • Huang, J., Q. Zhang, F. Scarpa, Y. Liu, and J. Leng. 2017. “Shape Memory Polymer-based Hybrid Honeycomb Structures with Zero Poisson’s Ratio and Variable Stiffness.” Composite Structures 179: 437–443. doi:10.1016/j.compstruct.2017.07.091.
  • Jacobs, E. N. 1934. “Airfoil Section Characteristics as Affected by Protuberances.”
  • Kaygan, E., and C. Ulusoy. 2018. “Effectiveness of Twist Morphing Wing on Aerodynamic Performance and Control of an Aircraft.” Journal of Aviation 2: 77–86.
  • Kim, N.-G., M.-W. Han, A. Iakovleva, H.-B. Park, W.-S. Chu, and S.-H. Ahn. 2020a. “Hybrid Composite Actuator with Shape Retention Capability for Morphing Flap of Unmanned Aerial Vehicle (UAV).” Composite Structures 243: 112227. doi:10.1016/j.compstruct.2020.112227.
  • Kim, N.-G., M.-W. Han, A. Iakovleva, H.-B. Park, W.-S. Chu, and S.-H. Ahn. 2020b. “Hybrid Composite Actuator with Shape Retention Capability for Morphing Flap of Unmanned Aerial Vehicle (UAV).” Composite Structures 243: 112227.
  • Lan, X., Y. Liu, H. Lv, X. Wang, J. Leng, and S. Du. 2009. “Fiber Reinforced Shape-memory Polymer Composite and Its Application in a Deployable Hinge.” Smart Materials and Structures 18: 024002. doi:10.1088/0964-1726/18/2/024002.
  • Leal, P. B., H. Stroud, E. Sheahan, M. Cabral, and D. J. Hartl, “Skin-based Camber Morphing Utilizing Shape Memory Alloy Composite Actuators in a Wind Tunnel Environment,” in 2018 AIAA/AHS Adaptive Structures Conference, Kissimmee, Florida, 2018, p. 0799.
  • Leng, J., X. Wu, and Y. Liu. 2009. “Effect of a Linear Monomer on the Thermomechanical Properties of Epoxy Shape-memory Polymer.” Smart Materials and Structures 18: 095031. doi:10.1088/0964-1726/18/9/095031.
  • Liu, T., T. Zhou, Y. Yao, F. Zhang, L. Liu, Y. Liu, and J. Leng. 2017. “Stimulus Methods of Multi-functional Shape Memory Polymer Nanocomposites: A Review.” Composites Part A: Applied Science and Manufacturing 100: 20–30. doi:10.1016/j.compositesa.2017.04.022.
  • Nguyen, H., and S. Ahmed, “A Development of Innovative Shape Memory Polymers and Their Nanocomposites to Resist the Load Aircraft High Lift,” 2020.
  • Raj, J. 2017. “Review of Variable Camber Morphing Wing: Variable Camber.” Journal of Mechanical and Aeronautical Engineering Research 1.
  • Şahin, H. L., B. O. Çakır, and Y. Yaman, “Aerodynamic Modelling and Analysis of a Novel Mechanism for Chord and Camber Morphing Wing,” in MATEC Web of Conferences, 2018, p. 04002.
  • Santos, P. D., D. B. Sousa, P. V. Gamboa, and Y. Zhao. 2018. “Effect of Design Parameters on the Mass of a Variable-span Morphing Wing Based on Finite Element Structural Analysis and Optimization.” Aerospace Science and Technology 80: 587–603. doi:10.1016/j.ast.2018.07.033.
  • Stacey, B. J., and P. Thomas. 2019. “Initial Analysis of a Novel Biomimetic Span-Wise Morphing Wing Concept.” Smart Materials, Adaptive Structures and Intelligent Systems 59131: V001T06A006.
  • Sun, J., L. Du, F. Scarpa, Y. Liu, and J. Leng. 2021. “Morphing Wingtip Structure Based on Active Inflatable Honeycomb and Shape Memory Polymer Composite Skin: A Conceptual Work.” Aerospace Science and Technology 111: 106541. doi:10.1016/j.ast.2021.106541.
  • Sun, J., Q. Guan, Y. Liu, and J. Leng. 2016. “Morphing Aircraft Based on Smart Materials and Structures: A State-of-the-art Review.” Journal of Intelligent Material Systems and Structures 27: 2289–2312. doi:10.1177/1045389X16629569.
  • Sun, J., Y. Liu, and J. Leng. 2015. “Mechanical Properties of Shape Memory Polymer Composites Enhanced by Elastic Fibers and Their Application in Variable Stiffness Morphing Skins.” Journal of Intelligent Material Systems and Structures 26: 2020–2027. doi:10.1177/1045389X14546658.
  • Thill, C., J. Etches, I. Bond, K. Potter, and P. Weaver. 2008. “Morphing Skins.” The Aeronautical Journal 112: 117–139. doi:10.1017/S0001924000002062.
  • Thill, C., J. Etches, I. Bond, K. Potter, and P. Weaver. 2010. “Composite Corrugated Structures for Morphing Wing Skin Applications.” Smart Materials and Structures 19: 124009. doi:10.1088/0964-1726/19/12/124009.
  • Van Zyl, E. J. 2020. Design and Development of a Morphing Wing Utilising Flexible Materials. Stellenbosch: Stellenbosch University.
  • Wilbur, M. L., M. P. Mistry, P. F. Lorber, S. Barbarino R. Blackwell Jr, T. H. Lawrence, and U. T. Arnold. 2018. “Rotary Wings Morphing Technologies: State of the Art and Perspectives.” In Morphing Wing Technologies, 759–797. ed: Elsevier.
  • Xia, Y., R. M. Ajaj, and M. I. Friswell, “Design and Optimisation of Composite Corrugated Skin for a Span Morphing Wing,” in 22nd AIAA/ASME/AHS Adaptive Structures Conference, National Harbor, Maryland, 2014, p. 0762.
  • Xia, Y., and M. I. Friswell. 2011. “Equivalent Models of Corrugated Laminates for Morphing Skins.” Active and Passive Smart Structures and Integrated Systems 2011 7977: 79771I.
  • Xin, X., L. Liu, Y. Liu, and J. Leng. 2019. “Mechanical Models, Structures, and Applications of Shape-memory Polymers and Their Composites.” Acta Mechanica Solida Sinica 32: 535–565. doi:10.1007/s10338-019-00103-9.
  • Yang, Q., and G. Li. 2016. “Temperature and Rate Dependent Thermomechanical Modeling of Shape Memory Polymers with Physics Based Phase Evolution Law.” International Journal of Plasticity 80: 168–186. doi:10.1016/j.ijplas.2015.09.005.
  • Yazik, M. M., M. Sultan, A. U. Shah, and M. Norkhairunnisa. 2020. “Effect of MWCNT Content on Thermal and Shape Memory Properties of Epoxy Nanocomposites as Material for Morphing Wing Skin.” Journal of Thermal Analysis and Calorimetry 139: 147–158. doi:10.1007/s10973-019-08367-6.
  • Yokozeki, T., A. Sugiura, and Y. Hirano. 2014. “Development of Variable Camber Morphing Airfoil Using Corrugated Structure.” Journal of Aircraft 51: 1023–1029. doi:10.2514/1.C032573.
  • Yu, K., Y. Liu, Y. Liu, H.-X. Peng, and J. Leng. 2014. “Mechanical and Shape Recovery Properties of Shape Memory Polymer Composite Embedded with Cup-stacked Carbon Nanotubes.” Journal of Intelligent Material Systems and Structures 25: 1264–1275. doi:10.1177/1045389X13504475.
  • Yuchen, C., S. Xing, L. Jiefeng, and C. Jinjin. 2019. “Nonlinear Hysteresis Identification and Compensation Based on the Discrete Preisach Model of an Aircraft Morphing Wing Device Manipulated by an SMA Actuator.” Chinese Journal of Aeronautics 32: 1040–1050. doi:10.1016/j.cja.2018.09.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.