86
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effect of nanofluids on heat transfer characteristics of an aerodynamic swirl nozzle for isothermal and isoflux conditions

&
Pages 49-67 | Received 30 May 2021, Accepted 13 Apr 2022, Published online: 27 Apr 2022

References

  • Ahmed, Z. U. (2016), “An Experimental and Numerical Study of Surface Interactions in Turbulent Swirling Jets,” PhD Thesis, Edith Cowan University, Australia.
  • Ahmed, Z. U., Y. M. Al-Abdeli, and F. G. Guzzomi. 2015. “Impingement Pressure Characteristics of Swirling and Non-swirling Turbulent Jets.” Experimental Thermal and Fluid Science 68: 722–732. doi:10.1016/j.expthermflusci.2015.07.017.
  • Ahmed, Z. U., Y. M. Al-Abdeli, and F. G. Guzzomi. 2016. “Corrections of Dual-wire CTA Data in Turbulent Swirling and Non-swirling Jets.” Experimental Thermal and Fluid Science 70: 166–175. doi:10.1016/j.expthermflusci.2015.09.007.
  • Akyürek, E. F., K. Geliş, B. Şahin, and E. Manay. 2018. “Experimental Analysis for Heat Transfer of Nanofluid with Wire Coil Turbulators in a Concentric Tube Heat Exchanger.” Results in Physics 9: 376–389. doi:10.1016/j.rinp.2018.02.067.
  • Al-Abdeli, Y. M., and A. R. Masri. 2003. “Recirculation and Flowfield Regimes of Unconfined Non-reacting Swirling Flows.” Experimental Thermal and Fluid Science 27 (5): 655–665. doi:10.1016/S0894-1777(02)00280-7 .
  • Al-Abdeli, Y. M., and A. R. Masri. 2004. “Precession and Recirculation in Turbulent Swirling Isothermal Jets.” Combustion Science and Technology 176 (5–6): 645–665. doi:10.1080/00102200490427883.
  • ANSYS Inc. 2016. “ANSYS FLUENT Theory Guide V 17.0.” Accessed 30 May 2021. https://pdfcoffee.com/qdownload/ansys-fluent-tutorial-guide-r170-pdf-free.html,
  • Asmaie, L., M. Haghshenasfard, A. Mehrabani-Zeinabad, and M. N. Esfahany. 2013. “Thermal Performance Analysis of Nanofluids in a Thermosyphon Heat Pipe Using CFD Modeling.” Heat and Mass Transfer 49 (5): 667–678. doi:10.1007/s00231-013-1110-6.
  • Azmi, W. H., K. V. Sharma, P. K. Sarma, R. Mamat, S. Anuar, and V. D. Rao. 2013. “Experimental Determination of Turbulent Forced Convection Heat Transfer and Friction Factor with SiO2 Nanofluid.” Experimental Thermal and Fluid Science 51: 103–111. doi:10.1016/j.expthermflusci.2013.07.006.
  • Behroyan, I., S. M. Vanaki, P. Ganesan, and R. Saidur. 2016. “A Comprehensive Comparison of Various CFD Models for Convective Heat Transfer of Al2O3 Nanofluid inside A Heated Tube.” International Communications in Heat and Mass Transfer 70: 27–37. doi:10.1016/j.icheatmasstransfer.2015.11.001.
  • Brinkman, H. C. 1952. “The Viscosity of Concentrated Suspensions and Solutions.” The Journal of Chemical Physics 20 (4): 571. doi:10.1063/1.1700493.
  • Choi, J., and Y. Zhang. 2012. “Numerical Simulation of Laminar Forced Convection Heat Transfer of Al2O3–water Nanofluid in a Pipe with Return Bend.” International Journal of Thermal Sciences 55: 90–102. doi:10.1016/j.ijthermalsci.2011.12.017.
  • Debnath, S., Md. Khan, H. U, and Z. U. Ahmed. 2020. “Turbulent Swirling Impinging Jet Arrays: A Numerical Study on Fluid Flow and Heat Transfer.” Thermal Science and Engineering Progress 19 (100580): 1–12. doi:10.1016/j.tsep.2020.100580.
  • Dowtherm, A. (1997), “Heat Transfer Fluid, Product Technical Data.”
  • Escue, A., and J. Cui. 2010. “Comparison of Turbulence Models in Simulating Swirling Pipe Flows.” Applied Mathematical Modelling 34 (10): 2840–2849. doi:10.1016/j.apm.2009.12.018.
  • Felli, M., M. Falchi, and P. Fornari. 2008. Impinging Swirling Jet against a Wall: Experimental Investigation by PIV and High Speed Visualizations. INSEAN, Italy: Propulsion and Cavitation Laboratory.
  • Fotukian, S. M., and M. N. Esfahany. 2010. “Experimental Investigation of Turbulent Convective Heat Transfer of Dilute γ-Al2O3/water Nanofluid inside a Circular Tube.” International Journal of Heat and Fluid Flow 31 (4): 606–612. doi:10.1016/j.ijheatfluidflow.2010.02.020.
  • Gore, R. W., and W. E. Ranz. 1964. “Backflows in Rotating Fluids Moving Axially through Expanding Cross Sections.” AIChE Journal 10 (1): 83–88. doi:10.1002/aic.690100126.
  • Guo, H. F., Z. Y. Chen, and C. W. Yu. 2009. “3D Numerical Simulation of Compressible Swirling Flow Induced by Means of Tangential Inlets.” International Journal for Numerical Methods in Fluids 59 (11): 1285–1298. doi:10.1002/fld.1872.
  • Halder, M. R., S. K. Dash, and S. K. Som (2003), “Influences of Nozzle Flow and Nozzle Geometry on the Shape and Size of an Air Core in a Hollow Cone Swirl Nozzle,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217( 2), 207–217. doi:10.1243/095440603762826521.
  • Hoseinzadeh, S., S. A. R. Sahebi, R. Ghasemiasl, and A. R. Majidian. 2017. “Experimental Analysis to Improving Thermosyphon (TPCT) Thermal Efficiency Using Nanoparticles/based Fluids (Water.” The European Physical Journal Plus 132 (5): 197. doi:10.1140/epjp/i2017-11455-3.
  • Hreiz, R., C. Gentric, and N. Midoux. 2011. “Numerical Investigation of Swirling Flow in Cylindrical Cyclones.” Chemical Engineering Research and Design 89 (12): 2521–2539. doi:10.1016/j.cherd.2011.05.001.
  • Hussein, A. M., R. A. Bakar, and K. Kadirgama. 2014. “Study of Forced Convection Nanofluid Heat Transfer in the Automotive Cooling System.” Case Studies in Thermal Engineering 2: 50–61. doi:10.1016/j.csite.2013.12.001.
  • Islam, S. M., M. T. Khan, and Z. U. Ahmed. 2020. “Effect of Design Parameters on Flow Characteristics of an Aerodynamic Swirl Nozzle.” Progress in Computational Fluid Dynamics, an International Journal 20 (5): 249–262. doi:10.1504/PCFD.2020.109912.
  • Jafari, M., M. Farhadi, and K. Sedighi. 2017. “An Experimental Study on the Effects of a New Swirl Generator on Thermal Performance of a Circular Tube.” International Communications in Heat and Mass Transfer 87: 277–287. doi:10.1016/j.icheatmasstransfer.2017.07.016.
  • Karimi, Y., A. R. S. Nazar, and M. Motevasel. 2021. “CFD Simulation of Nanofluid Heat Transfer considering the Aggregation of Nanoparticles in Population Balance Model.” Journal of Thermal Analysis and Calorimetry 143 (1): 671–684. doi:10.1007/s10973-019-09218-0.
  • Khan, M. T., S. M. Islam, and Z. U. Ahmed. 2020. “Near-wall and Turbulence Behavior of Swirl Flows through an Aerodynamic Nozzle.” Journal of Engineering Advancements 1 (2): 43–52. doi:10.38032/jea.2020.02.003.
  • Khanlari, A., A. Sözen, and H. İ. Variyenli. 2019. “Simulation and Experimental Analysis of Heat Transfer Characteristics in the Plate Type Heat Exchangers Using TiO2/water Nanofluid.” International Journal of Numerical Methods for Heat & Fluid Flow 29 (4): 1343–1362. doi:10.1108/HFF-05-2018-0191.
  • Maxwell-Garnett, J. C. 1904. “Colours in Metal Glasses and in Metallic Films.” Phil. Trans. R. Soc. Lond, A 203: 385–420.
  • Meng, X., and Y. Li. 2015. “Numerical Study of Natural Convection in a Horizontal Cylinder Filled with Water-based Alumina Nanofluid.” Nanoscale Research Letters 10 (1): 142. doi:10.1186/s11671-015-0847-x.
  • Moghadam, A. J., M. Farzane-Gord, M. Sajadi, and M. Hoseyn-Zadeh. 2014. “Effects of CuO/water Nanofluid on the Efficiency of a Flat-plate Solar Collector.” Experimental Thermal and Fluid Science 58: 9–14. doi:10.1016/j.expthermflusci.2014.06.014.
  • Mohammed, H. A., and K. Narrein. 2012. “Thermal and Hydraulic Characteristics of Nanofluid Flow in a Helically Coiled Tube Heat Exchanger.” International Communications in Heat and Mass Transfer 39 (9): 1375–1383. doi:10.1016/j.icheatmasstransfer.2012.07.019.
  • Mwesigye, A., Z. Huan, and J. P. Meyer. 2015. “Thermodynamic Optimisation of the Performance of a Parabolic Trough Receiver Using Synthetic oil–Al2O3 Nanofluid.” Applied Energy 156: 398–412. doi:10.1016/j.apenergy.2015.07.035.
  • Najafi, A. F., M. H. Saidi, M. S. Sadeghipour, and M. Souhar. 2005. “Numerical Analysis of Turbulent Swirling Decay Pipe Flow.” International Communications in Heat and Mass Transfer 32 (5): 627–638. doi:10.1016/j.icheatmasstransfer.2004.10.014.
  • Naphon, P., P. Assadamongkol, and T. Borirak. 2008. “Experimental Investigation of Titanium Nanofluids on the Heat Pipe Thermal Efficiency.” International Communications in Heat and Mass Transfer 35 (10): 1316–1319. doi:10.1016/j.icheatmasstransfer.2008.07.010.
  • Nasrin, R., M. A. Alim, and A. J. Chamkha. 2012. “Buoyancy-driven Heat Transfer of water–Al2O3 Nanofluid in a Closed Chamber: Effects of Solid Volume Fraction, Prandtl Number and Aspect Ratio.” International Journal of Heat and Mass Transfer 55 (25–26): 7355–7365. doi:10.1016/j.ijheatmasstransfer.2012.08.011.
  • Nazari, M. A., R. Ghasempour, M. H. Ahmadi, G. Heydarian, and M. B. Shafii. 2018. “Experimental Investigation of Graphene Oxide Nanofluid on Heat Transfer Enhancement of Pulsating Heat Pipe.” International Communications in Heat and Mass Transfer 91: 90–94. doi:10.1016/j.icheatmasstransfer.2017.12.006.
  • Promvonge, P., and S. Eiamsa-Ard. 2006. “Heat Transfer Enhancement in a Tube with Combined Conical-nozzle Inserts and Swirl Generator.” Energy Conversion and Management 47 (18–19): 2867–2882. doi:10.1016/j.enconman.2006.03.034.
  • Purohit, N., V. A. Purohit, and K. Purohit. 2016. “Assessment of Nanofluids for Laminar Convective Heat Transfer: A Numerical Study.” Engineering Science and Technology, an International Journal 19 (1): 574–586. doi:10.1016/j.jestch.2015.08.010.
  • Reddy, M. C. S., and V. V. Rao. 2014. “Experimental Investigation of Heat Transfer Coefficient and Friction Factor of Ethylene Glycol Water Based TiO2 Nanofluid in Double Pipe Heat Exchanger with and without Helical Coil Inserts.” International Communications in Heat and Mass Transfer 50: 68–76. doi:10.1016/j.icheatmasstransfer.2013.11.002.
  • Rose, W. G. 1962. “A Swirling Round Turbulent Jet: 1—Mean-flow Measurements.” Journal of Applied Mechanics 29 (4): 615–625. doi:10.1115/1.3640644.
  • Sajadi, A. R., and M. H. Kazemi. 2011. “Investigation of Turbulent Convective Heat Transfer and Pressure Drop of TiO2/water Nanofluid in Circular Tube.” International Communications in Heat and Mass Transfer 38 (10): 1474–1478. doi:10.1016/j.icheatmasstransfer.2011.07.007.
  • Saqr, K. M., and M. A. Wahid. 2014. “Effects of Swirl Intensity on Heat Transfer and Entropy Generation in Turbulent Decaying Swirl Flow.” Applied Thermal Engineering 70 (1): 486–493. doi:10.1016/j.applthermaleng.2014.05.059.
  • Sentyabov, A. V., A. A. Gavrilov, and A. A. Dekterev. 2011. “Investigation of Turbulence Models for Computation of Swirling Flows.” Thermophysics and Aeromechanics 18 (1): 73. doi:10.1134/S0869864311010094.
  • Sheikholeslami, M., and S. A. Shehzad. 2018. “Numerical Analysis of Fe3O4–H2O Nanofluid Flow in Permeable Media under the Effect of External Magnetic Source.” International Journal of Heat and Mass Transfer 118: 182–192. doi:10.1016/j.ijheatmasstransfer.2017.10.113.
  • Shirvan, K. M., M. Mamourian, S. Mirzakhanlari, and R. Ellahi. 2017. “Numerical Investigation of Heat Exchanger Effectiveness in a Double Pipe Heat Exchanger Filled with Nanofluid: A Sensitivity Analysis by Response Surface Methodology.” Powder Technology 313: 99–111. doi:10.1016/j.powtec.2017.02.065.
  • Singh, N. K., and K. Ramamurthi. 2009. “Formation of Coanda Jet from Sharp-edged Swirl Nozzle with Base Plate.” Experimental Thermal and Fluid Science 33 (4): 675–682. doi:10.1016/j.expthermflusci.2009.01.008.
  • Solomon, A. B., K. Ramachandran, L. G. Asirvatham, and B. C. Pillai. 2014. “Numerical Analysis of a Screen Mesh Wick Heat Pipe with Cu/water Nanofluid.” International Journal of Heat and Mass Transfer 75: 523–533. doi:10.1016/j.ijheatmasstransfer.2014.04.007.
  • Som, S. K., and S. G. Mukherjee. 1980. “Theoretical and Experimental Investigations on the Formation of Air Core in a Swirl Spray Atomizing Nozzle.” Applied Scientific Research 36 (3): 173–196. doi:10.1007/BF00386470.
  • Sözen, A., M. Gürü, A. Khanlari, and E. Çiftçi. 2019. “Experimental and Numerical Study on Enhancement of Heat Transfer Characteristics of a Heat Pipe Utilizing Aqueous Clinoptilolite Nanofluid.” Applied Thermal Engineering 160: 114001. doi:10.1016/j.applthermaleng.2019.114001.
  • Toh, K., D. Honnery, and J. Soria. 2010. “Axial Plus Tangential Entry Swirling Jet.” Experiments in Fluids 48 (2): 309–325. doi:10.1007/s00348-009-0734-2.
  • Xuan, Y., and W. Roetzel. 2000. “Conceptions for Heat Transfer Correlation of Nanofluids.” International Journal of Heat and Mass Transfer 43 (19): 3701–3707. doi:10.1016/S0017-9310(99)00369-5.
  • Yu, Z. T., X. Xu, Y. C. Hu, L. W. Fan, and K. F. Cen. 2011. “Numerical Study of Transient Buoyancy-driven Convective Heat Transfer of Water-based Nanofluids in a Bottom-heated Isosceles Triangular Enclosure.” International Journal of Heat and Mass Transfer 54 (1–3): 526–532. doi:10.1016/j.ijheatmasstransfer.2010.09.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.