149
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Impact response of a partially filled fuel tank subjected to high-velocity projectiles

, &
Pages 342-360 | Received 19 Feb 2022, Accepted 22 Jun 2022, Published online: 30 Jun 2022

References

  • Anghileri, Marco, Luigi-M.L. Castelletti, and Maurizio Tirelli. 2005. “Fluid–structure Interaction of Water Filled Tanks during the Impact with the ground; International.” Journal of Impact Engineering 31 (3, March): 235–254. doi:10.1016/j.ijimpeng.2003.12.005.
  • Artero-Guerrero, J.A., J. Pernas-Sánchez, D. Varas, and J. López-Puente. 2013. “Numerical Analysis of CFRP fluid-filled Tubes Subjected to high-velocity Impact.” Composite Structures February 96, 286–297.
  • Artero-Guerrero, J.A., J. Pernas-Sánchez, J. López-Puente, and D. Varas. 2014. “On the Influence of Filling Level in CFRP Aircraft Fuel Tank Subjected to High Velocity Impacts Composite Structures.” Journal of Economic Entomology 107 (2, January): 570–577. doi:10.1603/ec13488.
  • Chen, A, X Li, L Zhou, and Y. Ji. 1 Oct 2020. “Study of Liquid Spurt Caused by Hydrodynamic Ram in liquid-filled Container.” International Journal of Impact Engineering 144: 103658. doi:10.1016/j.ijimpeng.2020.103658.
  • Chen, C, T Liu, and Y. Cheng. 15 Jun 2022. “Impact Response of flowing-fluid Filled Square Vessels.” Ocean Engineering 254: 111405. doi:10.1016/j.oceaneng.2022.111405.
  • Chen, G, Y Zhao, Y Xue, K Huang, and T. Zeng. 1 Mar 2021. “Numerical Investigation on Performance of Protective Layer around large-scale Chemical Storage Tank against Impact by Projectile.” Journal of Loss Prevention in the Process Industries 69: 104351. doi:10.1016/j.jlp.2020.104351.
  • Cheng, LUO, LIU Huaa, and YANG Jia-ling. 2007. “LIU Kai-xin Simulation and Analysis of Crashworthiness of Fuel Tank for Helicopters.” Chinese Journal of Aero Nautics 20 (3): 230–235.
  • Deletombe, E., J. Fabis, J. Dupas, and J.M. Mortier. 2013. “Experimental Analysis of 7.62 Mm Hydrodynamic Ram in Containers.” Journal of Fluids and Structures 37 (February): 1–21. doi:10.1016/j.jfluidstructs.2012.11.003.
  • Go, E., I. Kim, D. Kim, K. Woo, J-H. Kim. 2017. “Failure Behavior of a Composite T-joint Subjected to Hydrodynamic Ram.” Journal of Mechanical Science and Technology 31 (9): 4085–4091. DOI:10.1007/s12206-017-0804-y.
  • Guo, Z, T Chen, G Zhao, and W. Zhang. 1 May 2022. “Hydrodynamic Ram Analysis in high-speed Projectile Penetrating into water-filled Vessels.” Ocean Engineering 251: 111092. doi:10.1016/j.oceaneng.2022.111092.
  • Heilig, G, and M. May. 1 Sep 2021. “Hydrodynamic Ram Effect Driven by a Hollow Spherical Hypervelocity Projectile.” Results in Engineering 11: 100269. doi:10.1016/j.rineng.2021.100269.
  • Ji, Y, X Li, L Zhou, and A. Chen. 1 Jul 2021. “Analytical Study on the Pressure Caused by Two Spherical Projectiles Penetrating a liquid-filled Container.” European Journal of Mechanics-B/Fluids 88: 103–122. doi:10.1016/j.euromechflu.2021.03.003.
  • Ji, Y, X Li, L Zhou, X Lan, and A. Chen. 1 Mar 2020. “Comparison of the Hydrodynamic Ram Caused by One and Two Projectiles Impacting water-filled Containers.” International Journal of Impact Engineering 137: 103467. doi:10.1016/j.ijimpeng.2019.103467.
  • Kim, Dong-Hyeop, and Sang-Woo Kim. “Evaluation of Bird strike-induced Damages of Helicopter Composite Fuel Tank Assembly Based on fluid-structure Interaction Analysis.” Composite Structures 210, 15 February 2019, 676–686.
  • Kim, HG, and SC. Kim. 4 Mar 2019. “A Numerical Study on the Influence of the Amount of Internal Fuel in A Bird Strike Test for the External Auxiliary Fuel Tank of Rotorcraft.” International Journal of Crashworthiness 24(2): 137–151. doi:10.1080/13588265.2017.1410339.
  • Kim, SC, and HG. Kim. 14 Jan 2019. “ALE Numerical Simulation of the Crash Impact Test of an External Auxiliary Fuel Tank.” International Journal of Crashworthiness 24(6): 593–605. doi:10.1080/13588265.2018.1495594.
  • Kwon, YW, K Yang, and C. Adams. 2016. “Kwon Modeling and Simulation of High-Velocity Projectile Impact on Storage Tank.” Journal of Pressure Vessel Technology 138 (4, January): 0513011–5130113. doi:10.1115/1.4032784.
  • Liu, Fang, Xiangshao Kong, Cheng Zheng, Xu Shuangxi, Wu Weiguo, and Pan Chen. “The Influence of Rubber Layer on the Response of fluid-filled Container Due to high-velocity Impact.” Composite Structures 183, 1 January 2018, 671–681.
  • Mansooria, Hassan, and Hamidreza Zareib. 2019. “FSI Simulation of Hydrodynamic Ram Event Using LS-Dyna Software Thin-Walled Structures.” Obstetrics and Gynecology 134 (January): 310–318. doi:10.1097/AOG.0000000000003370.
  • May, Michael, Georg Ganzenmueller, Johannes Wolfrum, and Sebastian Heimbs. 2015. “Analysis of Composite T-joint Designs for Enhanced Resistance to Hydrodynamic Ram.” Composite Structures 125: 188–194. doi:10.1016/j.compstruct.2015.02.012.
  • Rena, Peng, Jiaqi Zhoua, Ali Tiana, Renchuan Yea, Lu Shia, and Wei Zhang. 2018. “Experimental Investigation on Dynamic Failure of water-filled Vessel Subjected to Projectile Impact.” International Journal of Impact Engineering 117 (July): 153–163. doi:10.1016/j.ijimpeng.2018.03.009.
  • Rena, Peng, Lu Shia, Renchuan Yea, Dongliang Chaia, Wei Zhaoa, Jie Wua, Wei Zhang, and Mu. Zhongcheng. 2019. “A Combined Experimental and Numerical Investigation on Projectiles Penetrating into water-filled Container.” Thin-Walled Structures October 143, 106230.
  • Rosenberg, Z., S. J. Bless, and JP. Gallagher. 1987b. “A Model for Hydrodynamic Ram Failure Based on Fracture Mechanics Analysis.” International Journal Impact Engineering 6 (1): 51–61. doi:10.1016/0734-743X(87)90006-6.
  • Varas, D., J. Lo´ pez-Puente, and R. Zaera. 2009. “Experimental Analysis of fluid-filled Aluminium Tubes Subjected to high-velocity Impact.” International Journal of Impact Engineering 36 (1, January): 81–91. doi:10.1016/j.ijimpeng.2008.04.006.
  • Varas, D., R. Zaera, and J. Lo´ pez-Puente. 2009. “Numerical Modelling of the Hydrodynamic Ram Phenomenon.” International Journal of Impact Engineering 36 (3, March): 363–374. doi:10.1016/j.ijimpeng.2008.07.020.
  • Varas, D., R. Zaera, and J. López-Puente. 2011. “Experimental Study of CFRP fluid-filled Tubes Subjected to high-velocity Impact” Composite Structures. 93 (10): 2598–2609. September.
  • Varas, D., R. Zaera, and J. López-Puente. 2012. “Numerical Modelling of Partially Filled Aircraft Fuel Tanks Submitted to Hydrodynamic Ram”. Aerospace Science and Technology 16 (1): 19–28. January–February.
  • Wang, CY, JT Teng, and GP. Huang. 11 Jan 2011. “Numerical Simulation of Sloshing Motion inside a Two Dimensional Rectangular Tank by Level Set Method.” International Journal of Numerical Methods for Heat & Fluid Flow 21(1): 5–31. doi:10.1108/09615531111095049.
  • Wang, HF, JW Xie, C Ge, HG Guo, and YF. Zheng. 1 Apr 2021. “Experimental Investigation on Enhanced Damage to Fuel Tanks by Reactive Projectiles Impact.” Defence Technology 17(2): 599–608. doi:10.1016/j.dt.2020.03.017.
  • Yang, X, Z Zhang, J Yang, and Y. Sun. 2016. “Fluid–structure Interaction Analysis of the Drop Impact Test for Helicopter Fuel Tank.” SpringerPlus 5 (1, Dec): 1–21. doi:10.1186/s40064-016-3040-5.
  • Zhang, P, X Kong, Z Wang, C Zheng, H Liu, G Shi, JP Dear, and W. Wu. 1 Mar 2021a. “High Velocity Projectile Impact of a Composite rubber/aluminium fluid-filled Container.” International Journal of Lightweight Materials and Manufacture 4(1): 1–8. doi:10.1016/j.ijlmm.2020.06.007.
  • Zhang, Y, F An, S Liao, C Wu, J Liu, and Y. Li. 25 Dec 2021b. “Study on Numerical Simulation Methods for Hypervelocity Impact on Large-Scale Complex Spacecraft Structures.” Aerospace 9(1): 12. doi:10.3390/aerospace9010012.
  • Zhao, BL, JG Zhao, CY Cui, YS Duan, and Y. Wang. 1 Jun 2020. “Growth Model of Cavity Generated by the Projectile Impacting liquid-filled Tank.” Defence Technology 16(3): 609–616. doi:10.1016/j.dt.2019.09.013.
  • Zou, DL, YF Hao, H Wu, JG Sun, L Xu, and JG. Li. 1 May 2022. “Safety Assessment of large-scale All Steel LNG Storage Tanks under wind-borne Missile Impact.” Thin-Walled Structures 174: 109078. doi:10.1016/j.tws.2022.109078.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.