40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced performance of Cu2SnS3 absorber layer in SLG/Mo/Cu2SnS3/ZnS/ITO/Al structure: insights and optimisation using SCAPS-1D

ORCID Icon, , , &
Pages 29-35 | Received 10 Sep 2023, Accepted 22 Oct 2023, Published online: 31 Jan 2024

References

  • Ali, M. Y., M. A. Abedin, M. S. Hossain, and E. S. Hossain. 2020. “Optimization of Monoclinic cu2sns3 (Cts) Thin Film Solar Cell Performances Through Numerical Analysis.” Chalcogenide Letters 17 (2): 85–98. https://doi.org/10.15251/cl.2020.172.85.
  • Atay, F., I. Akyüz, F. Atay, and I. Akyüz. 2021. “The Effect of Sulphur Amount in Sulphurization Stage on Secondary Phases in Cu 2 SnS 3 (CTS) Films.” Current Applied Physics 26 (February): 64–71. https://doi.org/10.1016/j.cap.2021.03.009.
  • Avellaneda, D., A. Paul, S. Shaji, and B. Krishnan. 2022. “Synthesis of Cu2SnS3, Cu3SnS4, and Cu4SnS4 Thin Films by Sulfurization of SnS-Cu Layers at a Selected Temperature And/Or Cu Layers Thickness.” Journal of Solid State Chemistry 306 (July 2021): 122711. https://doi.org/10.1016/j.jssc.2021.122711.
  • Basyooni, M. A., W. Belaid, A. Houimi, S. E. Zaki, Y. R. Eker, S. Y. Gezgin, and H. Ş. Kiliç. 2022. “Observation of Negative Photoresponse in Joule-Heated Au/Cu2SnS3 Ternary Chalcogenide Thin Film Deposited by Low Energy Pulsed Laser Deposition.” Optical Materials 128 (April): 112389. https://doi.org/10.1016/j.optmat.2022.112389.
  • Bliya, A., S. E. Lachhab, and E. Al Ibrahmi. 2023. “Improving the Semiconductor Performance of SnO2/CdS/CuBi2o4 by Optimizing the Optical Properties of the CuBi2o4 Absorbent Layer.” Micro and Nanostructures 183:207667. https://doi.org/10.1016/j.micrna.2023.207667.
  • Choubrac, A. M. L., I. G. Hill, T. Unold, and D. B. Mitzi. 2021. “Optoelectronic and Material Properties of Solution-Processed Earth-Abundant Cu2BaSn(S, Se)4 Films for Solar Cell Applications.” Nano Energy 80 (August 2020): 105556. https://doi.org/10.1016/j.nanoen.2020.105556.
  • Heidariramsheh, M., S. Gharabeiki, S. M. Mahdavi, and N. Taghavinia. 2021. “Optoelectrical and Structural Characterization of Cu2SnS3 Thin Films Grown via Spray Pyrolysis Using Stable Molecular Ink.” Solar Energy 224 (May): 218–229. https://doi.org/10.1016/j.solener.2021.05.088.
  • He, M., J. Kim, M. P. Suryawanshi, A. C. Lokhande, M. Gang, U. V. Ghorpade, D. Seon Lee, and J. Hyeok Kim. 2018. “Influence of Sulfurization Temperature on Photovoltaic Properties of Ge Alloyed Cu2SnS3 (CTGS) Thin Film Solar Cells.” Solar Energy Materials & Solar Cells 174 (July 2017): 94–101. https://doi.org/10.1016/j.solmat.2017.08.008.
  • He, M., A. C. Lokhande, I. Young, U. V. Ghorpade, M. P. Suryawanshi, and J. Hyeok. 2017. “Fabrication of Sputtered Deposited Cu 2 SnS 3 (CTS) Thin Fi Lm Solar Cell with Power Conversion Ef Fi Ciency of 2. 39 %.” Journal of Alloys and Compounds 701:901–908. https://doi.org/10.1016/j.jallcom.2017.01.191.
  • Kanai, A., and M. Sugiyama. 2021. “Na Induction Effects for J–V Properties of Cu2SnS3 (CTS) Solar Cells and Fabrication of a CTS Solar Cell Over-5.2% Efficiency.” Solar Energy Materials & Solar Cells 231 (May): 111315. https://doi.org/10.1016/j.solmat.2021.111315.
  • Karthick, S., S. Velumani, and J. Bouclé. 2022. “Chalcogenide BaZrs3 Perovskite Solar Cells: A Numerical Simulation and Analysis Using SCAPS-1D.” Optical Materials 126 (March): 1–10. https://doi.org/10.1016/j.optmat.2022.112250.
  • Kumar, M., S. Rani, Y. Singh, A. Kumar Mamta, and V. N. Singh. 2022. “Strategy to Improve the Efficiency of Tin Selenide Based Solar Cell: A Path from 1.02 to 27.72%.” Solar Energy 232 (November 2021): 146–153. https://doi.org/10.1016/j.solener.2021.12.069.
  • Kutwade, V. V., K. P. Gattu, M. E. Sonawane, D. A. Tonpe, Ibrahim M.S. Mohammed, and R. Sharma. 2021. “Theoretical Modeling and Optimization: Cd-Free CTS/Zn (O, S)/ZnO Thin Film Solar Cell.” Materials Today Communications 29 (October): 102972. https://doi.org/10.1016/j.mtcomm.2021.102972.
  • Lachhab, S. E., A. Bliya, E. Al Ibrahmi, and L. Dlim. 2022. “Solar dome integration as technical new in water desalination: case study Morocco region Rabat-Kenitra.” Engineering Solid Mechanics 10 (3): 201–214. https://doi.org/10.5267/j.esm.2022.4.006.
  • Lachhab, S. E., A. Bliya, E. Al Ibrahmi, and L. Dlimi. 2022a. “Comparative Evaluation of the Numerical Results Carried Out on the Buffer Layer in Order to Optimize the Performance of the SnO2/CdS/CuBi2o4 Structure.” Optik (Stuttg) 265:169406. https://doi.org/10.1016/j.ijleo.2022.169406.
  • Lachhab, S. E., A. Bliya, E. Al Ibrahmi, and L. Dlimi. 2022b. “Comparative study of the results numerical and experimental carried out on the performance of the ZnO/CdS/CZTS structure.” Optik (Stuttg) 252 (Feb): 168514. https://doi.org/10.1016/J.IJLEO.2021.168514.
  • Laghchim, E., A. Raidou, A. Fahmi, and M. Fahoume. 2022a. “The Effect of ZnS Buffer Layer on Cu2SnS3 (CTS) Thin Film Solar Cells Performance: Numerical Approach.” Micro and Nanostructures 165 (November 2021): 207198. https://doi.org/10.1016/j.micrna.2022.207198.
  • Laghchim, E., A. Raidou, A. Fahmi, and M. Fahoume. 2022b. “The Effect of ZnS Buffer Layer on Cu2SnS3 (CTS) Thin Film Solar Cells Performance: Numerical Approach.” Micro and Nanostructures 165 (February): 207198. https://doi.org/10.1016/j.micrna.2022.207198.
  • Liu, X., X. Li, X. Li, Q. Li, D. Zhang, Na Yu, and S. Wang. 2021. “Fabrication of Cu2SnS3 Thin Film Solar Cells via a Sol-Gel Technique in Air.” Physica B: Condensed Matter 627 (July): 413613–413616. https://doi.org/10.1016/j.physb.2021.413613.
  • Maskaeva, L. N., O. A. Lipina, V. F. Markov, and E. A. Fedorova. 2018. “Optical Properties of Cu 2 S/SnS 2 Precursor Layers for the Preparation of Kesterite Cu 2 SnS 3 Photovoltaic Absorber.” KnE Materials Science 4 (2): 39–44. https://doi.org/10.18502/kms.v4i2.3035.
  • Maurya, K. K., and V. N. Singh. 2022. “Journal of Science: Advanced Materials and Devices Sb 2 Se 3/CZTS Dual Absorber Layer Based Solar Cell with 36. 32 % Ef Fi Ciency: A Numerical Simulation.” Journal of Science: Advanced Materials & Devices 7 (2): 100445. https://doi.org/10.1016/j.jsamd.2022.100445.
  • Nautiyal, H., K. Lohani, B. Mukherjee, E. Isotta, M. A. Malagutti, N. Ataollahi, I. Pallecchi, et al. 2023. “Mechanochemical Synthesis of Sustainable Ternary and Quaternary Nanostructured Cu 2 SnS 3, Cu 2 ZnSns 4, and Cu 2 ZnSnse 4 Chalcogenides for Thermoelectric Applications.” Nanomaterials 13 (2): 366. https://doi.org/10.3390/nano13020366.
  • Nouri, Y., B. Hartiti, A. Batan, A. Ziti, H. Labrim, A. Ouannou, A. Laazizi, S. Fadili, M. Tahri, and P. Thévenin. 2023. “Improvement Experimental and Numerical Simulation of Cu2SnS3-Based Solar Cells.” Optical Materials 137 (March): 113602. https://doi.org/10.1016/j.optmat.2023.113602.
  • Pallavolu, M. R., R. R. Nallapureddy, S. W. Joo, and C. Park. 2021. “Fabrication of Monoclinic-Cu2SnS3 Thin-Film Solar Cell and Its Photovoltaic Device Performance.” Optical Materials 111 (November 2020): 110668. https://doi.org/10.1016/j.optmat.2020.110668.
  • Rahaman, S., M. Anantha Sunil, M. Kumar Singha, and K. Ghosh. 2020. “Studies of Ultrasonically Sprayed Cu2SnS3thin Films by Varying Sn Concentration.” Materials Today: Proceedings 43:3938–3941. https://doi.org/10.1016/j.matpr.2021.02.657.
  • Rahaman, S., M. A. Sunil, M. Kumar, and K. Ghosh. 2021. “Materials Today: Proceedings Studies of Ultrasonically Sprayed Cu 2 SnS 3 Thin Films by Varying Sn Concentration.” Materials Today: Proceedings 43:3938–3941. https://doi.org/10.1016/j.matpr.2021.02.657.
  • Rahaman, S., M. A. Sunil, M. Kumar, and K. Ghosh. 2022. “Ultrasonic Spray Pyrolysis Deposited CTS Thin Film: Variation of Thiourea Concentration in the Film.” Materials Today: Proceedings 49:603–607. https://doi.org/10.1016/j.matpr.2021.04.513.
  • Rahaman, S., M. A. Sunil, M. K. Singha, and K. Ghosh. 2022. “Optimization and Fabrication of Low Cost Cu2SnS3/ZnS Thin Film Heterojunction Solar Cell Using Ultrasonic Spray Pyrolysis.” Optical Materials 123 (September 2021): 111838. https://doi.org/10.1016/j.optmat.2021.111838.
  • Raval, J. B., S. H. Chaki, B. S. Shah, and M. P. Deshpande. 2023. “Thermal and Electrical Transport Property Study of Direct Vapour Transport Grown Cu2SnS3 Single Crystals.” Materials Today: Proceedings 73:562–566. https://doi.org/10.1016/j.matpr.2022.10.291.
  • Robles, V., J. F. Trigo, C. Guillén, and J. Herrero. 2015. “Copper Tin Sulfide (CTS) Absorber Thin Films Obtained by Co-Evaporation: Influence of the Ratio Cu/Sn.” Journal of Alloys and Compounds 642:40–44. https://doi.org/10.1016/j.jallcom.2015.04.104.
  • Sabbir, E., P. Chelvanathan, S. Ahmad, K. Sopian, B. Bais, and N. Amin. 2018. “Performance Assessment of Cu 2 SnS 3 (CTS) Based Thin Fi Lm Solar Cells by AMPS-1D.” Current Applied Physics: The Official Journal of the Korean Physical Society 18 (1): 79–89. https://doi.org/10.1016/j.cap.2017.10.009.
  • Sozak, I. M. S., U. Yorulmaz, F. Atay, and I. Akyüz. 2021. “The Effect of Sulphur Amount in Sulphurization Stage on Secondary Phases in Cu2SnS3(CTS) Films.” Current Applied Physics 26 (March): 64–71. https://doi.org/10.1016/j.cap.2021.03.009.
  • Srivastava, A., S. K. Tripathy, T. R. Lenka, and V. Goyal. 2022. “Numerical Simulations of Novel Quaternary Chalcogenide Ag 2 MgSn (S/Se) 4 Based Thin Film Solar Cells Using SCAPS 1-D.” Solar Energy 239 (March): 337–349. https://doi.org/10.1016/j.solener.2022.05.014.
  • Suryawanshi, P. G., B. M. Babar, A. A. Mohite, U. Pawar, A. G. Bhosale, and H. D. Shelke. 2020. “A Simple Chemical Approach for the Deposition of cu2sns3 (Cts) Thin Films.” Materials Today: Proceedings 43:2682–2688. https://doi.org/10.1016/j.matpr.2020.05.211.
  • Suryawanshi, P. G., B. M. Babar, A. A. Mohite, U. T. Pawar, A. G. Bhosale, and H. D. Shelke. 2021. “Materials Today: Proceedings a Simple Chemical Approach for the Deposition of Cu 2 SnS 3 (CTS) Thin Films.” Materials Today: Proceedings 43:2682–2688. https://doi.org/10.1016/j.matpr.2020.05.211.
  • Yang, M., X. Huang, L. Yao, L. Lin, A. Chen, Y. Chen, Y. Che, et al. 2021. “Self-Stabilizing Molecular Solution for Cu2SnS3 Thin Film: An Insight into the Oxidation Inhibitor of Bivalent Tin Ion.” Journal of Power Sources 494 (March): 229699. https://doi.org/10.1016/j.jpowsour.2021.229699.
  • Zaki, M. Y., F. Sava, I. D. Simandan, A. T. Buruiana, I. Stavarache, A. E. Bocirnea, C. Mihai, A. Velea, and A. C. Galca. 2022. “A Two-Step Magnetron Sputtering Approach for the Synthesis of Cu 2 ZnSns 4 Films from Cu 2 SnS 3\zns Stacks.” ACS Omega 7 (27): 23800–23814. https://doi.org/10.1021/acsomega.2c02475.
  • Zhang, J. Y., B. Yao, Z. Ding, Y. Li, T. Wang, C. Wang, J. Liu, et al. 2022. “Efficiency Enhancement of Cu2ZnSn(S, Se)4 Solar Cells by Addition a CuSe Intermediate Layer Between Cu2ZnSn(S, Se)4 and Mo Electrode.” Journal of Alloys and Compounds 911:165056. https://doi.org/10.1016/j.jallcom.2022.165056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.