200
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of factors influencing absorbed energy in CFRP and Kevlar hybrid laminate subjected to low-velocity impact

, & ORCID Icon
Pages 1-9 | Received 10 Dec 2022, Accepted 03 Mar 2023, Published online: 21 Mar 2023

References

  • Ameerul Atrash Mohsin, Muhammad, A. A. M, L. Iannucci, and E. S. Greenhalgh. 2021. “Experimental and Numerical Analysis of Low-Velocity Impact of Carbon Fibre- Based Non-Crimp Fabric Reinforced Thermoplastic Composites.” Polymers 13 (21): 3642. doi:10.3390/polym13213642.
  • Amin Torabizadeh A., Mohammad, and A. Fereidoon. 2022. “Applying Taguchi Approach to Design Optimized Effective Parameters of Aluminum Foam Sandwich Panels Under Low Velocity Impact.” Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 46 (4): 851–862. doi:10.1007/s40997-021-00441-5.
  • Balkumar, K., A. V. Iyer, A. Ramasubramanian, K. Devarajan, and K. M. Prakash. 2016. “Numerical Simulation of Low Velocity Impact Analysis of Fiber Metal Laminates.” Mechanics of Mechanical Engineering 12 (4): 515–530.
  • George, PM., BK. Raghunath, LM. Manocha, AM. Warrier. 2004. “Modelling of Machinability Parameters of Carbon–Carbon Composite—A Response Surface Approach.” J Mater Process Technol 153 (1): 920–924.
  • Gomez-Del Rio, T., R. Zaera, E. Barbero, and C. Navarro. 2004. “Damage in CFRP Due to Low Velocity Impact at Low Temperature.” Composites Part B: Engineering 36 (1): 41–50. doi:10.1016/j.compositesb.2004.04.003.
  • Heimbs, S., S. Heller, P. Middendorf, F. Hahnel, and J. Weiβe. 2009. “Low Velocity Impact on CFRP Plates with Compressive Preload: Test and Modelling.” International Journal of Impact Engineering 36 (10–11): 1182–1193. doi:10.1016/j.ijimpeng.2009.04.006.
  • Junjie, Zhou J. W. Pihua, and W. Shengan. 2020. “Numerical Investigation on the Repeated Low Velocity Impact Behavior of Composite Laminates.” Composites Part B 185 (19): 33739-4. doi:10.1016/j.compositesb.2020.107771.
  • Khoramishad, H. and M. V. Mousavi. 2019. “The Effect of Hybridization on High-Velocity Impact Response of Carbon Fiber-Reinforced Polymer Composites Using Finite Element Modeling, Taguchi Method and Artificial Neural Network.” Aerospace Science and Technology 94: 105393. doi:10.1016/j.ast.2019.105393.
  • Kilickap, E. 2010. “Optimization of Cutting Parameters on Delamination Based on Taguchi Method During Drilling of GFRP Composite.” Expert Systems with Applications 37 (8): 6116–6122. doi:10.1016/j.eswa.2010.02.023.
  • Kowsari, E., V. Haddadi-Asl, F. B. Ajdari, and J. Hemmat. 2019. “Aramid Fibers Composites to Innovative Sustainable Materials for Biomedical Applications.” Materials for Biomedical Engineering: Biopolymer Fibers 11 (10): 173–204.
  • Lokesh, R., V. Jagadesh, and S. Suresh. 2021. “Mechanical and Low Velocity Impact Behavior of Al Based Kevlar Fabric Reinforced Epoxy Laminate.” International Journal of Applied Engineering Research 16 (8): 660–669.
  • Oliveira, P., S. Kilchert, M. May, T. Panzera, F. Scarpa, and S. Hiermaier. 2021. “Numerical and Experimental Investigations on Sandwich Panels Made with Eco-Friendly Components Under Low-Velocity Impact.” Journal of Sandwich Structures and Materials 24 (1): 1–29.
  • Rajesh Mathivanan, J. Jerald, and P. Behera. 2011. “Analysis of Factors Influencing Deflection in Sandwich Panels Subjected to Low-Velocity Impact.” International Journal of Advanced Manufacturing Technology 52 (5–8): 433–441. doi:10.1007/s00170-010-2750-z.
  • Rajesh, S., BV. Ramnath, and C. Elanchezian. 2018. “Investigation of Tensile Behavior of Kevlar Composite.” Materials Today: Proceedings 5 (1): 1156–1161. doi:10.1016/j.matpr.2017.11.196.
  • Sudha, G T., B. Stalin, and M. Ravichandran. 2019. “Optimization of Powder Metallurgy Parameters to Obtain Low Corrosion Rate and High Compressive Strength in Al- MoO3 Composites Using SN Ratio and ANOVA Analysis.” Materials Research Express 6 (9): 096520. doi:10.1088/2053-1591/ab2cef.
  • Wang, M., Z. Pan, W. Zhenyu, and Z. Ying. 2021. “Effect of Carbon/Kevlar Asymmetric Hybridization Ratio on the Low-Velocity Impact Response of Plain Woven Laminates.” Composite Structures 276: 114574.
  • Yazdani N., H., F. Merwicka, R. M. Frizzellab, and C. T. 2015. “McCarthya Numerical Analysis of Low-Velocity Rigid-Body Impact Response of Composite Panels.” International Journal of Crashworthiness 20 (1): 27–43. doi:10.1080/13588265.2014.963378.
  • Yiben, S. L., L. Lijun, X. Haiyan, and W. Yantao. 2020. “An Efficient Numerical Method to Analyze Low Velocity Impact Response of Carbon Fibre Reinforced Thermoplastic Laminates.” Polymer Composites 41 (7): 2673–2686.
  • Yuan, H., W. Liu, and Y. Shi. 2019. “Low-Velocity Impact Damage Research on CFRPs with Kevlar-Fiber Toughening.” Composite Structures 216: 127–141. doi:10.1016/j.compstruct.2019.02.051.
  • Zangana, S., J. Epaarachchi, W. Ferdous, and J. Leng. 2020. “A Novel Hybridised Composite Sandwich Core with Glass, Kevlar and Zylon Fibres – Investigation Under Low-Velocity Impact.” International Journal of Impact Engineering 137: 103430. doi:10.1016/j.ijimpeng.2019.103430.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.