91
Views
0
CrossRef citations to date
0
Altmetric
Article

Field production of purple coneflower for beneficial phytochemicals

, , , &
Pages 198-211 | Received 08 May 2023, Accepted 22 Jul 2023, Published online: 09 Aug 2023

References

  • Abbasi, B. H., Tian, C. L., Murch, S. J., Saxena, P. K., & Liu, C. Z. (2007). Light-enhanced caffeic acid derivatives biosynthesis in hairy root cultures of Echinacea purpurea. Plant Cell Reports, 26(8), 1367–1372. https://doi.org/10.1007/s00299-007-0344-5
  • Barnes, J., Anderson, L. A., Gibbons and, S., & Phillipson, J. D. (2005). Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): A review of their chemistry, pharmacology and clinical properties. The Journal of Pharmacy and Pharmacology, 57(8), 929–954. https://doi.org/10.1211/0022357056127
  • Barrett, B. (2003). Medicinal properties of echinacea: A critical review. Phytomedicine, 10(1), 66–86. https://doi.org/10.1078/094471103321648692
  • Bauer, R. (1999). Standardization of Echinacea purpurea expressed juice with reference to cichoric acid and alkamides. Journal of Herbs, Spices & Medicinal Plants, 6(3), 51–62. https://doi.org/10.1300/j044v06n03_05
  • Bauer, V. R., Jurcic, K., Puhlmann, J., & Wagner, H. (1988). Immunologic in vivo and in vitro studies on Echinacea extracts. Arznei-Forschung, 38, 276–281. https://doi.org/10.1016/0378-8741(88)90021-9
  • Bauer, R., & Woelkart, K. (2005). Encyclopedia of dietary supplements. Echinacea Species. https://doi.org/10.1081/E-EDS-120022101
  • Berbec, S., Krol, B., & Wolski, T. (1998). The effect of soil and fertilization on the biomass and phenolic acids content in coneflower (Echinacea purpurea Moench.). Herba Polonica, 4, 397–402.
  • Binns, S. E., Arnason, J. T., & Baum, B. R. (2002). Phytochemical variation within populations of Echinacea angustifolia (Asteraceae). Biochemical Systematics and Ecology, 30(9), 837–854. https://doi.org/10.1016/s0305-1978(02)00029-7
  • Binns, S. E., Hudson, J., Merali, S., & Arnason, J. T. (2002). Antiviral activity of characterized extracts from Echinacea spp. (Heliantheae: Asteraceae) against herpes simplex virus (HSV-I). Planta medica, 68(9), 780–783. https://doi.org/10.1055/s-2002-34397
  • Binns, S. E., Livesey, J. F., Arnason, J. T., & Baum, R. R. (2002). Phytochemical variation in Echinacea from roots and flowerheads of wild and cultivated populations. Journal of Agricultural & Food Chemistry, 50(13), 3673–3687. https://doi.org/10.1021/jf011439t
  • Bodinet, C., Lindequist, U., Teuscher, E., & Freudenstein, J. (2002). Effect of an orally applied herbal immunomodulator on cytokine induction and antibody response in normal and immunosuppressed mice. Phytomedicine, 9(7), 606–613. https://doi.org/10.1078/094471102321616418
  • Broz, A. K., Broeckling, C. D., De la-Peña, C., Lewis, M. R., Greene, E., Callaway, R. M., Summer, L. W., & Vivanco, J. M. (2010). Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biology, 10(1), 115. https://doi.org/10.1186/1471-2229-10-115
  • Brunetti, C., George, R. M., Tattini, M., Field, K., & Davey, M. P. (2013). Metabolomics in plant environmental physiology. Journal of Experimental Botany, 64(13), 4011–4020. https://doi.org/10.1093/jxb/ert244
  • Bundy, J. G., Davey, M. P., & Viant, M. R. (2009). Environmental metabolomics: A critical review and future perspectives. Metabolomics, 5(1), 3. https://doi.org/10.1007/s11306-008-0152-0
  • Burger, R. A., Torres, A. R., Warren, R. P., Caldwell, V. D., & Hughes, B. G. (1997). Echinacea-induced cytokine production by human macrophages. International Journal of Immunopharmacology, 19(7), 371–379. https://doi.org/10.1016/s0192-0561(97)00061-1
  • Cech, N. B., Eleazer, M. S., Shoffner, L. T., Crosswhite, M. R., Davis, A. C., & Mortenson, A. M. (2006). High performance liquid chromatography/electrospray ionization mass spectrometry for simultaneous analysis of alkamides and caffeic acid derivatives from Echinacea purpurea extracts. Journal of Chromatography, 1103(2), 219–228. https://doi.org/10.1016/j.chroma.2005.11.008
  • Cervantes-Hernández, F., Alcalá-González, P., Martínez, O., & Ordaz-Ortiz, J. J. (2019). Placenta, pericarp, and seeds of tabasco chili pepper fruits show a contrasting diversity of bioactive metabolites. Metabolites, 9(10), 206. https://doi.org/10.3390/metabo9100206
  • Chambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S., Gatto, L., Fischer, B., Pratt, B., Egertson, J., Hoff, K., Kessner, D., Tasman, N., Shulman, N., Frewen, B., Baker, T. A., Brusniak, M.-Y., Paulse, C. & Tabb, D. L. (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30(10), 918–920. https://doi.org/10.1038/nbt.2377
  • Chen, S. L., Yu, H., Luo, H. M., Wu, Q., Li, C. F., & Steinmetz, A. (2016). Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chinese Medicine, 11(1), 37. https://doi.org/10.1186/s13020-016-0108-7
  • Chishaki, N., & Horiguchi, T. (1997). Responses of secondary metabolism in plants to nutrient deficiency. In Plant nutrition for sustainable food production and environment (pp. 341–345). Springer Netherlands. https://doi.org/10.1007/978-94-009-0047-9_101
  • Currier, N. L., & Miller, S. C. (2000). Natural killer cells from aging mice treated with extracts from Echinacea purpurea are quantitatively and functionally rejuvenated. Experimental Gerontology, 35(5), 627–639. https://doi.org/10.1016/s0531-5565(00)00106-6
  • Dalby-Brown, L., Barsett, H., Landbo, A. K. R., Meyer, A. S., & Mølgaard, P. (2005). Synergistic antioxidative effects of alkamides, caffeic acid derivatives, and polysaccharide fractions from Echinacea purpurea on in vitro oxidation of human low-density lipoproteins. Journal of Agricultural & Food Chemistry, 53(24), 9413–9423. https://doi.org/10.1021/jf0502395
  • DiStefano, V., Pitonzo, R., Novara, M. E., Bongiorno, D., Indelicato, S., Gentile, C., Avellone, G., Bognanni, R., Scandurra, S., & Melilli, M. G. (2019). Antioxidant activity and phenolic composition in pomegranate (Punica granatum L.) genotypes from south Italy by UHPLC-Orbitrap-MS approach. Journal of the Science of Food and Agriculture, 99(3), 1038–1045. https://doi.org/10.1002/jsfa.9270
  • Du, Y., Wang, Z., Wang, L., Gao, M., Wang, L., Gan, C., & Yang, C. (2017). Simultaneous determination of seven phenolic acids in rat plasma using UHPLC-ESI-MS/MS after oral administration of Echinacea purpurea extract. Molecules, 22(9), 1494. https://doi.org/10.3390/molecules22091494
  • Eschenlauer, A., Sammons, K., Griffin, T. J., & Hegeman, A. D. (2019). Tools to facilitate untargeted metabolomics LC-MS data processing in the workflow4metabolomics framework. Preparation.
  • Finch‐Savage, W. E., & Leubner‐Metzger, G. (2006). Seed dormancy and the control of germination. The New Phytologist, 171(3), 501–523. https://doi.org/10.1111/j.1469-8137.2006.01787.x
  • Fornara, D. A., & Tilman, D. (2009). Ecological mechanisms associated with the positive diversity–productivity relationship in an N‐limited grassland. Ecology, 90(2), 408–418. https://doi.org/10.1890/08-0325.1
  • Freund Saxhaug, K., Jungers, J. M., Hegeman, A. D., Wyse, D. L., & Sheaffer, C. C. (2020). Cultivation of native plants for seed and biomass yield. Agronomy Journal, 112(3), 1815–1827. https://doi.org/10.1002/agj2.20195
  • Goel, V., Chang, C., Slama, J. V., Barton, R., Bauer, R., Gahler, R., & Basu, T. K. (2002). Alkamides of Echinacea purpurea stimulate alveolar macrophage function in normal rats. International Immunopharmacology, 2(2–3), 381–387. https://doi.org/10.1016/s1567-5769(01)00163-1
  • Gray, D. E., Pallardy, S. G., Garrett, H. E., & Rottinghaus, G. E. (2003). Acute drought stress and plant age effects on alkamide and phenolic acid content in purple coneflower roots. Planta medica, 69(1), 50–55. https://doi.org/10.1055/s-2003-37026
  • Grevsen, K., Fretté, X. C., & Christensen, L. P. (2008). Concentration and composition of flavonol glycosides and phenolic acids in aerial parts of stinging nettle (Urtica dioica L.) are affected by nitrogen fertilization and by harvest time. European Journal of Horticultural Science, 73(1), 20.
  • Grimm, W., & Müller, H. H. (1999). A randomized controlled trial of the effect of fluid extract of Echinacea purpurea on the incidence and severity of colds and respiratory infections. The American Journal of Medicine, 106(2), 138–143. https://doi.org/10.1016/s0002-9343(98)00406-9
  • Guitton, Y., Tremblay-Franco, M., Corguillé, G. L., Martin, J. F., Pétéra, M., Roger-Mele, P., Delabrière, A., Goulitquer, S., Monsoor, M., Duperier, C., Canlet, C., Servien, R., Tardivel, P., Caron, C., Giacomoni, F., & Thévenot, E. (2017). Create, run, share, publish, and reference your LC–MS, FIA–MS, GC–MS, and NMR data analysis workflows with the workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics. The International Journal of Biochemistry & Cell Biology, 93, 89–101. https://doi.org/10.1016/j.biocel.2017.07.002
  • Hahn, R., & Nahrstedt, A. (1993). Hydroxycinnamic acid derivatives, caffeoylmalic and new caffeoylaldonic acid esters, from chelidonium majus. Planta medica, 59(1), 71–75. https://doi.org/10.1055/s-2006-959608
  • Haron, M. H., Tyler, H. L., Chandra, S., Moraes, R. M., Jackson, C. R., Pugh, N. D., & Pasco, D. S. (2019). Plant microbiome-dependent immune enhancing action of Echinacea purpurea is enhanced by soil organic matter content. Scientific Reports, 9(1), Rep–UK. 9. https://doi.org/10.1038/s41598-018-36907-x
  • He, X. G., Lin, L. Z., Bernart, M. W., & Lian, L. Z. (1998). Analysis of alkamides in roots and achenes of Echinacea purpurea by liquid chromatography–electrospray mass spectrometry. Journal of Chromatography, 815(2), 205–211. https://doi.org/10.1016/s0021-9673(98)00447-6
  • Hu, C., & Kitts, D. D. (2000). Studies on the antioxidant activity of echinacea root extract. Journal of Agricultural & Food Chemistry, 48, 1466–1472. https://doi.org/10.1021/jf990677+
  • Kabganian, R., Carrier, D. J., Rose, P. A., Abrams, S. R., & Sokhansanj, S. (2003). Localization of alkamides, echinacoside and cynarin with Echinacea angustifolia. Journal of Herbs, Spices & Medicinal Plants, 10(2), 73–81. https://doi.org/10.1300/j044v10n02_08
  • Karsch-Völk, M., Barrett, B., & Linde, K. (2015). Echinacea for preventing and treating the common cold. JAMA, 313(6), 618–619. https://doi.org/10.1002/14651858.cd000530.pub3
  • Kindscher, K. (2016). The biology and ecology of echinacea species. In Echinacea: 47-54 (pp. 47–54). Springer International Publishing. https://doi.org/10.1007/978-3-319-18156-1_5
  • Kindscher, K., & Riggs, M. (2016). Cultivation of Echinacea angustifolia and Echinacea purpurea. In Echinacea: 21-33 (pp. 21–33). Springer International Publishing. https://doi.org/10.1007/978-3-319-18156-1_3
  • Kohl, S. M., Klein, M. S., Hochrein, J., Oefner, P. J., Spang, R., & Gronwald, W. (2012). State-of-the art data normalization methods improve NMR-based metabolomic analysis. Metabolomics, 8(S1), 146–160. https://doi.org/10.1007/s11306-011-0350-z
  • Korkina, L. G. (2007). Phenylpropanoids as naturally occurring antioxidants: From plant defense to human health. Cellular and Molecular Biology, 53, 15–25. https://doi.org/10.2174/138955711796575489
  • Kuhnert, N., Jaiswal, R., Matei, M. F., Sovdat, T., & Deshpande, S. (2010). How to distinguish between feruloyl quinic acids and isoferuloyl quinic acids by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 24(11), 1575–1582. https://doi.org/10.1002/rcm.4537
  • Kurkin, V. A., Akushskaya, A. S., Avdeeva, E. V., Velmyaikina, E. I., Daeva, E. D., & Kadentsev, V. I. (2011). Flavonoids from Echinacea purpurea. Russian Journal of Bioorganic Chemistry, 37(7), 905–906. https://doi.org/10.1134/s1068162011070120
  • Lavola, A. (1998). Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiology, 18(1), 53–58. https://doi.org/10.1093/treephys/18.1.53
  • Lee, J. (2010). Caffeic acid derivatives in dried Lamiaceae and Echinacea purpurea products. Journal of Functional Foods, 2(2), 158–162. https://doi.org/10.1016/j.jff.2010.02.003
  • Lenth, R., Singmann, H., Love, J., Buerkner, P., & Herve, M. (2018). Emmeans: Estimated marginal means, aka least-squares means. R package version. http://CRAN.R-project.org/package=emmeans
  • Letchamo, W., Livesey, J., Arnason, T., Bergeron, C., & Krutilina, V. (1999). Cichoric acid and isobutylamide content in Echinacea purpurea as influenced by flower developmental stages. In Perspectives on New Crops and New Uses (pp. 494–498). Alexandria, VA: ASHS Press.
  • Liu, L., Gitz Iii, D. C., & McClure, J. W. (1995). Effects of UV‐B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves. Physiologia plantarum, 93(4), 725–733. https://doi.org/10.1034/j.1399-3054.1995.930421.x
  • Liu, Y. C., Zeng, J. G., Chen, B., & Yao, S. Z. (2007). Investigation of phenolic constituents in Echinacea purpurea grown in China. Planta medica, 73(15), 1600–1605. https://doi.org/10.1055/s-2007-993742
  • Liu, L., Zhang, J., Zheng, B., Guan, Y., Wang, L., Chen, L., & Cai, W. (2018). Rapid characterization of chlorogenic acids in Duhaldea nervosa based on ultra-high-performance liquid chromatography-linear trap quadropole-Orbitrap-mass spectrometry and mass spectral trees similarity filter technique. Journal of Separation Science, 41(8), 1764–1774. https://doi.org/10.1002/jssc.201701047
  • Lopes-Lutz, D., Mudge, E., Ippolito, R., Brown, P., & Schieber, A. (2010). Purification of alkylamides from Echinacea angustifolia (DC.) Hell. roots by high-speed countercurrent chromatography. Journal of Agricultural & Food Chemistry, 59(2), 491–494. https://doi.org/10.1021/jf103436p
  • Lu, Y., Li, J., Li, M., Hu, X., Tan, J., & Liu, Z. H. (2012). Efficient counter-current chromatographic isolation and structural identification of two new cinnamic acids from Echinacea purpurea. Natural Product Communications, 7(10), 1934578X1200701026. https://doi.org/10.1177/1934578x1200701026
  • Luo, X. B., Chen, B., Yao, S. Z., & Zeng, J. G. (2003). Simultaneous analysis of caffeic acid derivatives and alkamides in roots and extracts of Echinacea purpurea by high-performance liquid chromatography–photodiode array detection–electrospray mass spectrometry. Journal of Chromatography, 986(1), 73–81. https://doi.org/10.1016/s0021-9673(02)01922-2
  • Luthria, D. L., Mukhopadhyay, S., & Krizek, D. T. (2006). Content of total phenolics and phenolic acids in tomato (Lycopersicon esculentum Mill.) fruits as influenced by cultivar and solar UV radiation. Journal of Food Composition & Analysis, 19(8), 771–777. https://doi.org/10.1016/j.jfca.2006.04.005
  • Maggini, V., De Leo, M., Granchi, C., Tuccinardi, T., Mengoni, A., Gallo, E. R., Biffi, S., Fani, R., Pistelli, L., Firenzuoli, F., & Bogani, P. (2019). The influence of Echinacea purpurea leaf microbiota on chicoric acid level. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-47329-8
  • Maggini, V., De Leo, M., Mengoni, A., Gallo, E. R., Miceli, E., Reidel, R. V. B., Biffi, S., Pistelli, L., Fani, R., Firenzuoli, F., & Bogani, P. (2017). Plant-endophytes interaction influences the secondary metabolism in Echinacea purpurea (L.) Moench: An in vitro model. Scientific Reports, 7(1), 16924. https://doi.org/10.1038/s41598-017-17110-w
  • Manayi, A., Vazirian, S., & Saeidnia, M. (2015). Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacognosy Reviews, 9(17), 63. https://doi.org/10.4103/0973-7847.156353
  • Mari, A., Montoro, P., D’Urso, G., Macchia, M., Pizza, C., & Piacente, S. (2015). Metabolic profiling of Vitex agnus castus leaves, fruits and sprouts: Analysis by LC/ESI/(QqQ) MS and (HR) LC/ESI/(Orbitrap)/MSn. Journal of Pharmaceutical & Biomedical Analysis, 102, 215–221. https://doi.org/10.1016/j.jpba.2014.09.018
  • Martin, A. C., Pawlus, A. D., Jewett, E. M., Wyse, D. L., Angerhofer, C. K., & Hegeman, A. D. (2014). Evaluating solvent extraction systems using metabolomics approaches. RSC Advances, 4(50), 26325–26334. https://doi.org/10.1039/c4ra02731k
  • Matthias, A., Blanchfield, J. T., Penman, K. G., Toth, I., Lang, C. S., De Voss, J. J., & Lehmann, R. (2004). Permeability studies of alkamides and caffeic acid conjugates from echinacea using a Caco‐2 cell monolayer model. Journal of Clinical Pharmacy and Therapeutics, 29(1), 7–13. https://doi.org/10.1046/j.1365-2710.2003.00530.x
  • McKeown, K. A. (1999). A review of the taxonomy of the genus Echinacea. In J. Janick (Ed.), Perspectives on new crops and new uses (pp. 482–498). ASHS Press.
  • Melchart, D., Clemm, C., Weber, B., Draczynski, T., Worku, F., Linde, K., Weidenhammer, W., Wagner, H., & Saller, R. (2002). Polysaccharides isolated from Echinacea purpurea herba cell cultures to counteract undesired effects of chemotherapy—a pilot study. Phytotherapy Research: PTR, 16(2), 138–142. https://doi.org/10.1002/ptr.888
  • Miller, S. C., Yu, H. C., Miller, S. C., & Yu, H.-C. (2004). Echinacea: The genus Echinacea. CRC Press. https://doi.org/10.1201/9780203022696
  • Mudge, E., Lopes-Lutz, D., Brown, P., & Schieber, A. (2011). Analysis of alkylamides in Echinacea plant materials and dietary supplements by ultrafast liquid chromatography with diode array and mass spectrometric detection. Journal of Agricultural & Food Chemistry, 59(15), 8086–8094. https://doi.org/10.1021/jf201158k
  • Pellati, F., Benvenuti, S., Melegari, M., & Lasseigne, T. (2005). Variability in the composition of anti‐oxidant compounds in Echinacea species by HPLC. Phytochemical Analysis, 16(2), 77–85. https://doi.org/10.1002/pca.815
  • Pellati, F., Epifano, F., Contaldo, N., Orlandini, G., Cavicchi, L., Genovese, S., Bertelli, D., Benvenuti, S., Curini, M., Bertaccini, A., & Bellardi, M. G. (2011). Chromatographic methods for metabolite profiling of virus- and phytoplasma-infected plants of Echinacea purpurea. Journal of Agricultural & Food Chemistry, 59(19), 10425–10434. https://doi.org/10.1021/jf2025677
  • Perry, N. B., van Klink, J. W., Burgess, E. J., & Parmenter, G. A. (1997). Alkamide levels in Echinacea purpurea: A rapid analytical method revealing differences among roots, rhizomes, stems, leaves and flowers. Planta medica, 63(1), 58–62. https://doi.org/10.1055/s-2006-957605
  • Pietta, P., Mauri, P., & Bauer, R. (1998). MEKC analysis of different Echinacea species. Planta medica, 64(7), 649–652. https://doi.org/10.1055/s-2006-957540
  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2018). Nlme: Linear and nonlinear mixed effects models. R package version. http://CRAN.R-project.org/package=nlme.
  • Pires, C., Martins, N., Carvalho, A. M., Barros, L., & Ferreira, I. C. (2016). Phytopharmacologic preparations as predictors of plant bioactivity: A particular approach to Echinacea purpurea (L.) Moench antioxidant properties. Nutrition, 32(7–8), 834–839. https://doi.org/10.1016/j.nut.2016.01.005
  • Pomponio, R., Gotti, R., Hudaib, M., & Cavrini, V. (2002). Analysis of phenolic acids by micellar electrokinetic chromatography: Application to Echinacea purpurea plant extracts. Journal of Chromatography, 945(1–2), 239–247. https://doi.org/10.1016/s0021-9673(01)01488-1
  • Qu, L., Chen, Y., Wang, X., Scalzo, R., & Davis, J. M. (2005). Patterns of variation in alkamides and cichoric acid in roots and aboveground parts of Echinacea purpurea (L.) Moench. HortScience, 40(5), 1239–1242. https://doi.org/10.21273/hortsci.40.5.1239
  • R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
  • Riggs, M., & Kindscher, K. (2016). The Echinacea market. In Echinacea (pp. 165–175). Springer International Publishing. https://doi.org/10.1007/978-3-319-18156-1_11
  • Salek, R. M., Steinbeck, C., Goodacre, M. R., Dunn, W. B., & Dunn, W. B. (2013). The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience, 2(1), 2047–217X. https://doi.org/10.1186/2047-217x-2-13
  • Sampaio, B. L., Edrada-Ebel, R., & Da Costa, F. B. (2016). Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Scientific Reports, 6(1), 29265. https://doi.org/10.1038/srep29265
  • Scherling, C., Roscher, C., Giavalisco, P., Schulze, E. D., Weckwerth, W., & Chave, J. (2010). Metabolomics unravel contrasting effects of biodiversity on the performance of individual plant species. PLoS One, 5(9), e12569. https://doi.org/10.1371/journal.pone.0012569
  • Schoop, R., Klein, P., Suter, A., & Johnston, S. L. (2006). Echinacea in the prevention of induced rhinovirus colds: A meta-analysis. Clinical Therapeutics, 28(2), 174–183. https://doi.org/10.1016/j.clinthera.2006.02.001
  • Sharma, M., Anderson, S. A., Schoop, R., & Hudson, J. B. (2009). Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract. Antiviral Research, 83(2), 165–170. https://doi.org/10.1016/j.antiviral.2009.04.009
  • Sherrard, M. E., Elgersma, K. J., Koos, J. M., Kokemuller, C. M., Dietz, H. E., Glidden, A. J., Carr, C. M., & Cambardella, C. A. (2019). Species composition influences soil nutrient depletion and plant physiology in prairie agroenergy feedstocks. Ecosphere, 10(7). https://doi.org/10.1002/ecs2.2805
  • Smith, T., Kawa, K., Eckl, V., Morton, C., & Stredney, R. (2018). Herbal supplement sales in US increase 8.5% in 2017, topping $8 billion. HerbalGram, 119, 62–71. https://abc-media.mcnines.net/media/xxod5ku4/issue119.pdf
  • Spelman, K., Wetschler, M. H., & Cech, N. B. (2009). Comparison of alkylamide yield in ethanolic extracts prepared from fresh versus dry Echinacea purpurea utilizing HPLC–ESI-MS. Journal of Pharmaceutical & Biomedical Analysis, 49(5), 1141–1149. https://doi.org/10.1016/j.jpba.2009.02.011
  • Stuart, D. L., & Wills, R. B. H. (2000). Alkylamide and cichoric acid levels in Echinacea purpurea tissues during plant growth. Journal of Herbs, Spices & Medicinal Plants, 7(1), 91–101. https://doi.org/10.1016/s0308-8146(99)00129-6
  • Thomsen, M. O., Christensen, L. P., & Grevsen, K. (2018). Harvest strategies for optimization of the content of bioactive alkamides and caffeic acid derivatives in aerial parts and in roots of Echinacea purpurea. Journal of Agricultural & Food Chemistry, 66(44), 11630–11639. https://doi.org/10.1021/acs.jafc.8b03420
  • Thomsen, M. O., Fretté, X. C., Christensen, K. B., Christensen, L. P., & Grevsen, K. (2012). Seasonal variations in the concentrations of lipophilic compounds and phenolic acids in the roots of Echinacea purpurea and Echinacea pallida. Journal of Agricultural & Food Chemistry, 60(49), 12131–12141. https://doi.org/10.1021/jf303292t
  • Thygesen, L., Thulin, J., Mortensen, A., Skibsted, L. H., & Molgaard, P. (2007). Antioxidant activity of cichoric acid and alkamides from Echinacea purpurea, alone and in combination. Food Chemistry, 101(1), 74–81. https://doi.org/10.1016/j.foodchem.2005.11.048
  • Turner, R. B., Riker, D. K., & Gangemi, J. D. (2000). Ineffectiveness of Echinacea for prevention of experimental rhinovirus colds. Antimicrobial Agents and Chemotherapy, 44(6), 1708–1709. https://doi.org/10.1128/aac.44.6.1708-1709.2000
  • van Dam, N. M., & van der Meijden, E. (2018). A role for metabolomics in plant ecology. Annalen Plant Review, 87–107. https://doi.org/10.1002/9781444339956.ch4
  • Verdonk, J. C., De Vos, C. R., Verhoeven, H. A., Haring, M. A., van Tunen, A. J., & Schuurink, R. C. (2003). Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry, 62(6), 997–1008. https://doi.org/10.1016/s0031-9422(02)00707-0
  • Vimalanathan, S., Kang, L., Amiguet, V. T., Livesey, J., Arnason, J. T., & Hudson, J. (2005). Echinacea purpurea. aerial parts contain multiple antiviral compounds. Pharmaceutical Biology, 43(9), 740–745. https://doi.org/10.1080/13880200500406354
  • Vimalanathan, S., Schoop, R., & Hudson, J. (2013). High-potency Anti-influenza therapy by a combination of Echinacea purpurea fresh herb and root tinctures. Journal Application Pharmaceut Science, 3, 001–005. https://doi.org/10.1055/s-0033-1352301
  • Wagenius, S., & Lyon, S. P. (2010). Reproduction of Echinacea angustifolia in fragmented prairie is pollen‐limited but not pollinator‐limited. Ecology, 91(3), 733–742. https://doi.org/10.1890/08-1375.1
  • Wang, Y., Hao, H., Wang, G., Tu, P., Jiang, Y., Liang, Y., Dai, L., Yang, H., Lai, L., Zheng, C., Wang, Q., Cui, N., & Liu, Y. (2009). An approach to identifying sequential metabolites of a typical phenylethanoid glycoside, echinacoside, based on liquid chromatography–ion trap-time of flight mass spectrometry analysis. Talanta, 80(2), 572–580. https://doi.org/10.1016/j.talanta.2009.07.027
  • Wills, R. B. H., & Stuart, D. L. (1999). Alkamide and cichoric acid levels in Echinacea purpurea grown in Australia. Food Chemistry, 67(4), 385–388. https://doi.org/10.1016/s0308-8146(99)00129-6
  • Wist, T. J., & Davis, A. R. (2005). Floral nectar production and nectary anatomy and ultrastructure of Echinacea purpurea (Asteraceae). Annals of Botany, 97(2), 177–193. https://doi.org/10.1093/aob/mcj027
  • Zheng, Y., Dixon, M., & Saxena, P. K. (2006). Growing environment and nutrient availability affect the content of some phenolic compounds in Echinacea purpurea and Echinacea angustifolia. Planta medica, 72(15), 1407–1414. https://doi.org/10.1055/s-2006-951720

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.