114
Views
0
CrossRef citations to date
0
Altmetric
Article

Effective Agrobacterium-mediated genetic transformation of okra (Abelmoschus esculentus L.) and generation of RNAi plants resistant to Begomovirus infecting okra

, , &
Pages 146-159 | Received 09 Nov 2022, Accepted 30 May 2023, Published online: 10 Sep 2023

References

  • Anisuzzaman, M., Kabir, A. H., Sarker, K., Jarin, S., & Alam, M. F. (2010). Micropropagation of Abelmoschus esculentus L. (Moench.) for disease free plantlets through meristem culture Arch. Phytopathology Plant Protect, 43(5), 460–46.
  • Briddon, R. W., Prescott, A. G., Lunness, P., Chamberlin, L. C. L., & Markham, P. G. (1993). Rapid production of full-length, infectious geminivirus clones by abutting primer PCR (AbP-PCR). Journal of Virological Methods, 43(1), 7–20. https://doi.org/10.1016/0166-0934(93)90085-6
  • Dhande, G. A., Patil, V. M., Raut, R. V., Rajput, J. C., & Ingle, A. G. (2012). Regeneration of okra (Abelmoschus esculentus L.) via apical shoot culture system. African Journal of Biotechnology, 11, 15226–15230.
  • FAOSTAT. (2020) Available online at: http://faostat.fao.org/.
  • Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient requirement of suspension cultures of soybean root cells. Experimental cell research, 50, 151–158.
  • Ganesan, M., Chandrasekar, R., Ranjitha, B. D., & Jayabalan, N. (2007). Somatic embryogenesis and plant regeneration of Abelmoschus esculentus through suspension culture. Biologia Plantarum, 51, 414–420.
  • Gelvin, S. B. (2003). Agrobacterium -mediated plant transformation: The biology behind the “gene-Jockeying” tool. Microbiology and Molecular Biology Reviews: MMBR, 67(1), 16–37. https://doi.org/10.1128/MMBR.67.1.16-37.2003
  • Ghosh, R., Paul, S., Ghosh, S. K., & Roy, A. (2009). An improved method of DNA isolation suitable for PCR-based detection of begomoviruses from jute and other mucilaginous plants. Journal of virological methods, 159, 34–39.
  • Höfgen, R., & Willmitzer, L. (1988). Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research, 16(20), 9877. https://doi.org/10.1093/nar/16.20.9877
  • Jambhale, N. D., & Nerkar, Y. S. (1986). ‘Parbhani Kranti’, a yellow vein mosaic-resistant okra. HortScience, 21(6), 1470–1471. https://doi.org/10.21273/HORTSCI.21.6.1470
  • Jia, R., Zhao, H., Huang, J., Kong, H., Zhang, Y., Guo, J., Huang, Q., Guo, Y., Wei, Q., Zuo, J., Zhu, Y. J., Peng, M., & Guo, A. (2017). Use of RNAi technology to develop a PRSV-resistant transgenic papaya. Scientific Reports, 7(1), 12636. https://doi.org/10.1038/s41598-017-13049-0
  • Jones, L., Ratcliff, F., & Baulcombe, D. C. (2011). RNA-directed transcriptional gene silencing in plants can be inheritated independently of the RNA trigger and requires Met1 for maintenance. Current Biology: CB, 11(10), 747–757. https://doi.org/10.1016/S0960-9822(01)00226-3
  • Khatoon, S., Kumar, A., Sarin, N. B., & Khan, J. A. (2016). Rnai-mediated resistance against cotton leaf curl disease in elite Indian cotton (Gossypium hirsutum) cultivar Narasimha. Virus Genes, 52(4), 530–537. https://doi.org/10.1007/s11262-016-1328-8
  • Kulkarni, G. S. (1924). Mosaic and other related diseases of crops in the Bombay Presidency. Poona Agricultural College Magazine, 6, 12.
  • Kumar, R., Patil, M. B., Patil, S. R., & Paschapur, M. S. (2009). Evaluation of Abelmoschus esculentus mucilage as suspending agent in paracetamol suspension. International Journal Pharm Technical Response, 1, 658–665.
  • Kumar, S., Tanti, B., Patil, B. L., Mukherjee, S. K., Sahoo, L., & Zhang, P. (2017). Rnai-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea. Plos One, 12(10), e0186786. https://doi.org/10.1371/journal.pone.0186786
  • Lin, J. (2002) Jack Lin’s siRNA sequence finder. http://www.sinc.sunysb.edu/Stu/shilin/rnai.html.
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods [Internet], 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
  • Mangat, B. S., & Roy, M. K. (1986). Tissue culture and plant regeneration of okra (Abelmoschus esculentus). Plant Science, 47, 57–61.
  • Manickavasagam, M., Subramanyam, K., Iujb, I., Elayaraja, D., & Ganapathi, A. (2015). Assessment of factors influencing the tissue cultureindependent Agrobacterium-mediated in planta genetic transformation of okra [Abelmoschus esculentus (L.) Moench]. Plant Cell, Tissue and Organ Culture (PCTOC), 123(2), 309–320. https://doi.org/10.1007/s11240-015-0836-x
  • Medina- Hernandez, D., Rivera-Bustamante, R. F., Tenllado, F., & Holguin-Pena, R. J. (2013). Effects and effectiveness of two RNAi constructs for resistance to pepper golden mosaic virus in Nicotiana benthamiana plants. Viruses, 5(12), 2931–2945. https://doi.org/10.3390/v5122931
  • Menon, R., Sarao, N. K., & Pathak, M. (2018). In planta agrobacterium -mediated genetic transformation in okra {Abelmoschus esculentus (L.) moench}. Applied Biological Research, 20(3), 221. https://doi.org/10.5958/0974-4517.2018.00030.7
  • Mette, M. F., Aufsatz, W., Vander Winden, J., Matzke, M. A., & Matzke, A. J. M. (2000). Transcriptional silencing and promoter methylation triggered by double-stranded RNA. The EMBO Journal, 19(19), 5194–5201. https://doi.org/10.1093/emboj/19.19.5194
  • Mishra, G. P., Singh, B., Seth, T., Singh, A. K., Halder, J., Krishnan, N., Tiwari, S. K., & Singh, P. M. (2017). Biotechnological advancements and Begomovirus Management in okra (Abelmoschus esculentus L.): Status and perspectives. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2017.00360
  • Mohanpuria, P., Kumar, V., Ahuja, P. S., & Yadav, S. K. (2010). Agrobacterium-mediated silencing of caffeine synthesis through root transformation in Camellia sinensis L. Molecular Biotechnology, 48(3), 235–243. https://doi.org/10.1007/s12033-010-9364-4
  • Mubin, M., Hussain, M., Briddon, R. W., & Mansoor, S. (2011). Selection of target sequences as well as sequence identity determine the outcome of RNAi approach for resistance against cotton leaf curl geminivirus complex. Virology Journal, 8(1), 122. https://doi.org/10.1186/1743-422X-8-122
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiology, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Nahid, N., Amin, A., Briddon, R. W., & Mansoor, S. (2011). RNA interference-based resistance against a legume mastrevirus. Virology Journal, 8(1), 499. https://doi.org/10.1186/1743-422X-8-499
  • Narendran, M., Deole, S. G., Harkude, S., Shirale, D., Nanote, A., Bihani, P., Parimi, S., Char, B. R., & Zehr, U. B. (2013). Efficient genetic transformation of okra (Abelmoschus esculentus L. Moench) and generation of insect-resistant transgenic plants expressing the cry1Ac gene. Plant Cell Reports, 32(8), 1191–1198. https://doi.org/10.1007/s00299-013-1415-4
  • Patil, B. L., Bagewadi, B., Yadav, J. S., & Fauquet, C. M. (2016). Mapping and identification of cassava mosaic geminivirus DNA-A and DNA-B genome sequences for efficient siRNA expression and RNAi based virus resistance by transient agro-infiltration studies. Virus Research, 213, 109–115. https://doi.org/10.1016/j.virusres.2015.11.011
  • Praveen, S., Ramesh, S. V., Mishra, A. K., Koundal, V., & Paulkaitis, P. (2010). Silencing potential of viral derived RNAi construct in Tomato yellow leaf curl virus-AC4 gene suppression in tomato. Transgenic Research, 19(1), 45–55. https://doi.org/10.1007/s11248-009-9291-y
  • Rajamony, L., Chandran, M., & Rajmohan, K. (2006). In vitro embryo rescues of interspecific crosses for transferring virus resistance in okra (Abelmoschus esculentus (L.) Moench). Acta horticulturae, 725(725), 235–240. https://doi.org/10.17660/ActaHortic.2006.725.30
  • Sabitha, V., Ramachandran, S., Naveen, K. R., & Panneerselvam, K. (2011). Antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus (L.) Moench. In streptozotocin-induced diabetic rats. Journal of Pharmacy & Bioallied Sciences, 3(3), 397–402. https://doi.org/10.4103/0975-7406.84447
  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual (2nd ed.). New York, USA: Cold Spring Harbor Laboratory Press.
  • Sanwal, S. K., Singh, M., Singh, B., & Naik, P. S. (2014). Resistance to yellow vein mosaic virus and okra enation leaf curl virus: Challenges and future strategies. Current Science, 106, 470–1471.
  • Sanwal, S. K., Venkataravanappa, V., & Singh, B. (2016). Resistance to bhendi yellow vein mosaic disease: a review. Indian J. Agric. Sci, 86, 835–843.
  • Sastry, K. S., Zitter, T. A. (2014). Management of virus and viroid diseases of crops in the tropics. In K. Sastry & T. Zitter (Eds.), Plant virus and viroid diseases in the tropics (Vol. 2, pp. 149–480). Epidemiology and Management (Springer Netherlands. https://doi.org/10.1007/978-94-007-7820-7_2
  • Shanmugapriya, G., Das, S. S., & Veluthambi, K. (2015). Transgenic tobacco plants expressing siRNA targeted against the Mungbean yellow mosaic virus transcriptional activator protein gene efficiently block the viral DNAAccumulation. VirusDisease, 26(1–2), 55–61. https://doi.org/10.1007/s13337-015-0251-2
  • Sharma, V. K., Basu, S., & Chakraborty, S. (2015). Rnai mediated broad-spectrum transgenic resistance in Nicotiana benthamiana to chilli-infecting begomoviruses. Plant Cell Reports, 34(8), 1389–1399. https://doi.org/10.1007/s00299-015-1795-8
  • Singh, J. S. (1996). Assessment of losses in okra due to enation leaf curl virus. Indian Journal of Virology: An Official Organ of Indian Virological Society, 12, 51–53.
  • Singh, B., Sanwal, S., Venkataravanappa, V., & Halder, J. (2013). Breeding strategies for biotic stresses of okra: Prospects and potential. In Abstract book of national symposium on abiotic and biotic stress management in vegetable crops (pp. 32–33). Varanasi.
  • Singh, A., Taneja, J., Dasgupta, I., & Mukherjee, S. K. (2015). Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. Molecular Plant Pathology, 16(7), 724–734. https://doi.org/10.1111/mpp.12229
  • Sohrab, S. S., Kamal, M. A., Ilah, A., Husen, A., Bhattacharya, P. S., & Rana, D. (2016). Development of cotton leaf curl virus resistant transgenic cotton using antisense ßC1 gene. Saudi Journal of Biological Sciences, 23(3), 358–362. https://doi.org/10.1016/j.sjbs.2014.11.013
  • Sunitha, S., Shanmugapriya, G., Balamani, V., & Veluthambi, K. (2013). Mungbean yellow mosaic virus (MYMV) AC4 suppresses posttranscriptional gene silencing and an AC4 hairpin RNA gene reduces MYMV DNA accumulation in transgenic tobacco. Virus Genes, 46(3), 496–504. https://doi.org/10.1007/s11262-013-0889-z
  • Uppal, B. N., Varma, P. M., & Capoor, S. P. (1940). Yellow vein mosaic of bhendi. Current Science, 9, 227–228.
  • Veluthambi, K., & Sunitha, S. (2021). Targets and mechanisms of geminivirus silencing suppressor protein AC2. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.645419
  • Venkataravanappa, V., Reddy, C. N. L., Jalali, S., & Reddy, M. K. (2012). Molecular characterization of distinct bipartite begomovirus infecting bhendi (Abelmoschus esculentus L.) in India. Virus Genes, 44(3), 522–535. https://doi.org/10.1007/s11262-012-0732-y
  • Venkataravanappa, V., Reddy, C. N. L., Jalali, S., & Reddy, M. K. (2013). Molecular characterization of a new species of begomovirus associated with yellow vein mosaic of bhendi (okra) in Bhubhaneswar, India. European Journal of Plant Pathology / European Foundation for Plant Pathology, 136(4), 811–822. https://doi.org/10.1007/s10658-013-0209-4
  • Waterhouse, P. M., Wang, M. B., & Lough, T. (2001). Gene silencing as an adaptive defense against viruses. Nature, 411(6839), 834–842. https://doi.org/10.1038/35081168
  • Yasmeen, A., Kiani, S., Butt, A., Rao, A. Q., Akram, F., Ahmad, A., Nasir, I. A., Tayyab, H., Mansoor, S., Amin, I., Aftab, S., Zubair, M., Tahir, M. N., Akhtar, S., Scheffler, J., & Scheffler, B. (2016). Amplicon-based RNA interference targeting V2 gene of cotton leaf curl Kokhran virus-Burewala strain can provide resistance in transgenic cotton plants. Molecular Biotechnology, 58(12), 807–820. https://doi.org/10.1007/s12033-016-9980-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.