3,640
Views
0
CrossRef citations to date
0
Altmetric
Article

Effect of microclimate and photosynthesis on strawberry reproductive growth in a greenhouse: using cumulative leaf photosynthesis as an index to predict the time of harvest

, , , , , , , , , & show all
Pages 223-232 | Received 04 Apr 2023, Accepted 17 Aug 2023, Published online: 10 Sep 2023

References

  • Abd-Elrahman, A., Wu, F., Agehara, S., & Britt, K. (2021). Improving strawberry yield prediction by integrating ground-based canopy images in modeling approaches. ISPRS International Journal of Geo-Information, 10(4), 1–16. https://doi.org/10.3390/ijgi10040239
  • Ariza, M. T., Soria, C., & Martínez-Ferri, E. (2015). Developmental stages of cultivated strawberry flowers in relation to chilling sensitivity. AoB Plants, 7, 419–431. https://doi.org/10.1093/aobpla/plv012
  • Cervantes, L., Ariza, M. T., Gómez-Mora, J. A., Miranda, L., Medina, J. J., Soria, C., & Martínez-Ferri, E. (2019). Light exposure affects fruit quality in different strawberry cultivars under field conditions. Scientia horticulturae, 252, 291–297. https://doi.org/10.1016/j.scienta.2019.03.058
  • Chen, Y., Lee, W. S., Gan, H., Peres, N., Fraisse, C., Zhang, Y., & He, Y. (2019). Strawberry yield prediction based on a deep neural network using high-resolution aerial orthoimages. Remote Sensing, 11(13), 1–21. https://doi.org/10.3390/rs11131584
  • Choi, H. G., Moon, B. Y., & Kang, N. J. (2016). Correlation between strawberry (Fragaria ananassa Duch.) productivity and photosynthesis-related parameters under various growth conditions. Frontiers in Plant Science, 7, 1–13. https://doi.org/10.3389/fpls.2016.01607
  • Cui, M., Pham, M. D., Hwang, H., & Chun, C. (2021). Flower development and fruit malformation in strawberries after short-term exposure to high or low temperature. Scientia horticulturae, 288, 110308. https://doi.org/10.1016/j.scienta.2021.110308
  • Doan, C. C., & Tanaka, M. (2022). Relationships between tomato cluster growth indices and cumulative environmental factors during greenhouse cultivation. Scientia horticulturae, 295, 110803. https://doi.org/10.1016/j.scienta.2021.110803
  • Duursma, R. A. (2015). Plantecophys - an R package for analysing and modelling leaf gas exchange data. PLoS One, 10(11), e0143346. https://doi.org/10.1371/journal.pone.0143346
  • Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78–90. https://doi.org/10.1007/BF00386231
  • Hernandez-Santana, V., Perez-Arcoiza, A., Gomez-Jimenez, M. C., & Diaz-Espejo, A. (2021). Disentangling the link between leaf photosynthesis and turgor in fruit growth. The Plant Journal: For Cell and Molecular Biology, 107(6), 1788–1801. https://doi.org/10.1111/tpj.15418
  • Hidaka, K., Dan, K., Imamura, H., Miyoshi, Y., Takayama, T., Sameshima, K., Kitano, M., & Okimura, M. (2013). Effect of supplemental lighting from different light sources on growth and yield of strawberry. Environment Control in Biology, 51(1), 41–47. https://doi.org/10.2525/ecb.51.41
  • Hidaka, K., Dan, K., Miyoshi, Y., Imamura, H., Takayama, T., Kitano, M., Sameshima, K., & Okimura, M. (2016). Twofold increase in strawberry productivity by integration of environmental control and movable beds in a large-scale greenhouse. Environment Control in Biology, 54(2), 79–92. https://doi.org/10.2525/ecb.54.79
  • Hidaka, K., Miyoshi, Y., Ishii, S., Suzui, N., Yin, Y. G., Kurita, K., Nagao, K., Araki, T., Yasutake, D., Kitano, M., & Kawachi, N. (2019). Dynamic analysis of photosynthate translocation into strawberry fruits using non-invasive 11C-labeling supported with conventional destructive measurements using 13C-labeling. Frontiers in Plant Science, 9, 1–12. https://doi.org/10.3389/fpls.2018.01946
  • Hidaka, K., Nakahara, S., Yasutake, D., Zhang, Y., Okayasu, T., Dan, K., Kitano, M., & Sone, K. (2022). Crop-local CO2 enrichment improves strawberry yield and fuel use efficiency in protected cultivations. Scientia horticulturae, 301, 111104. https://doi.org/10.1016/j.scienta.2022.111104
  • Hidaka, K., Okamoto, A., Araki, T., Miyoshi, Y., Dan, K., Imamura, H., Kitano, M., Sameshima, K., & Okimura, M. (2014). Effect of photoperiod of supplemental lighting with light-emitting diodes on growth and yield of strawberry. Environmental Control in Biology, 52(2), 63–71. https://doi.org/10.2525/ecb.52.63
  • Kaneko, T., Nomura, K., Yasutake, D., Iwao, T., Okayasu, T., Ozaki, Y., Mori, M., Hirota, T., & Kitano, M. (2022). A canopy photosynthesis model based on a highly generalizable artificial neural network incorporated with a mechanistic understanding of single-leaf photosynthesis. Agricultural and Forest Meteorology, 323, 109036. https://doi.org/10.1016/j.agrformet.2022.109036
  • Kawanobu, S., Waiima, T., Zushi, K., Mori, T., & Matsuzoe, N. (2010). Seasonal variations in the maturation period, anthocyanin content, and ascorbic acid content in strawberry fruits. Environment Control in Biology, 48(4), 175–184. https://doi.org/10.2525/ecb.48.175
  • Kimura, K., Yasutake, D., Koikawa, K., & Kitano, M. (2020). Spatiotemporal variability of leaf photosynthesis and its linkage with microclimates across an environment-controlled greenhouse. Biosystems Engineering, 195, 97–115. https://doi.org/10.1016/j.biosystemseng.2020.05.003
  • Konsin, M., Voipio, I., & Palonen, P. (2001). Influence of photoperiod and duration of short-day treatment on vegetative growth and flowering of strawberry (Fragaria 3 ananassa Duch.). Journal of Horticultural Science and Biotechnology, 76(1), 77–82. https://doi.org/10.1080/14620316.2001.11511330
  • Krüger, E., Josuttis, M., Nestby, R., Toldam-Andersen, T. B., Carlen, C., & Mezzetti, B. (2012). Influence of growing conditions at different latitudes of Europe on strawberry growth performance, yield and quality. Journal of Berry Research, 2(3), 143–157. https://doi.org/10.3233/JBR-2012-036
  • Ledesma, N. A., & Kawabata, S. (2016). Responses of two strawberry cultivars to severe high temperature stress at different flower development stages. Scientia horticulturae, 211, 319–327. https://doi.org/10.1016/j.scienta.2016.09.007
  • Ledesma, N. A., Nakata, M., & Sugiyama, N. (2008). Effect of high temperature stress on the reproductive growth of strawberry cvs. ‘Nyoho’ and ‘Toyonoka’. Scientia horticulturae, 116(2), 186–193. https://doi.org/10.1016/j.scienta.2007.12.010
  • Long, S. P., Zhu, X. G., Naidu, S. L., & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment, 29(3), 315–330. https://doi.org/10.1111/j.1365-3040.2005.01493.x
  • Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., Crous, K. Y., De Angelis, P., Freeman, M., & Wingate, L. (2011). Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology, 17(6), 2134–2144. https://doi.org/10.1111/j.1365-2486.2010.02375.x
  • Menzel, C. M. (2021). A review of productivity in strawberries: Marketable yield has a linear, but inconsistent relationship with total yield, and cannot be predicted from total yield. Journal of Horticultural Science and Biotechnology, 96(2), 135–144. https://doi.org/10.1080/14620316.2020.1808086
  • Miyoshi, Y., Hidaka, K., Okayasu, T., Yasutake, D., & Kitano, M. (2017). Effects of local CO2 enrichment on strawberry cultivation during the winter season. Environment Control in Biology, 55(4), 165–170. https://doi.org/10.2525/ecb.55.165
  • Miyoshi, Y., Hidaka, K., Yin, Y. G., Suzui, N., Kurita, K., & Kawachi, N. (2021). Non-invasive 11C-imaging revealed the spatiotemporal variability in the translocation of photosynthates into strawberry fruits in response to increasing daylight integrals at leaf surface. Frontiers in Plant Science, 12, 688887. https://doi.org/10.3389/fpls.2021.688887
  • Muir, C. D. (2019). Tealeaves: An R package for modelling leaf temperature using energy budgets. AoB Plants, 11(6), lz054. https://doi.org/10.1093/aobpla/plz054
  • Nakai, H., Yasutake, D., Kimura, K., I, K., Hidaka, K., Eguchi, T., Hirota, T., Okayasu, T., Ozaki, Y., & Kitano, M. (2022). Dynamics of carbon export from leaves as translocation affected by the coordination of carbohydrate availability in field strawberry. Environmental and Experimental Botany, 196, 104806. https://doi.org/10.1016/j.envexpbot.2022.104806
  • Niinemets, Ü., & Keenan, T. (2014). Photosynthetic responses to stress in Mediterranean evergreens: mechanisms and models. Environmental and Experimental Botany, 103, 24–41. https://doi.org/10.1016/j.envexpbot.2013.11.008
  • Nomura, K., Yasutake, D., Kaneko, T., Takada, A., Okayasu, T., Ozaki, Y., Mori, M., & Kitano, M. (2021). Long-term compound interest effect of CO2 enrichment on the carbon balance and growth of a leafy vegetable canopy. Scientia horticulturae, 283, 110060. https://doi.org/10.1016/j.scienta.2021.110060
  • Opstad, N., Sønsteby, A., Myrheim, U., & Heide, O. M. (2011). Seasonal timing of floral initiation in strawberry: Effects of cultivar and geographic location. Scientia horticulturae, 129(1), 127–134. https://doi.org/10.1016/j.scienta.2011.03.022
  • Sønsteby, A., Solhaug, K. A., & Heide, O. M. (2016). Functional growth analysis of ‘Sonata’ strawberry plants grown under controlled temperature and daylength conditions. Scientia horticulturae, 211, 26–33. https://doi.org/10.1016/j.scienta.2016.08.003
  • Twitchen, C., Else, M. A., & Hadley, P. (2021). The effect of temperature and light intensity on rate of strawberry fruit ripening. Acta horticulturae, 1309(1309), 643–648. https://doi.org/10.17660/ActaHortic.2021.1309.92
  • Wang, R., Eguchi, M., Gui, Y., & Iwasaki, Y. (2020). Evaluating the effect of light intensity on flower development uniformity in strawberry (Fragaria ×ananassa) under early induction conditions in forcing culture. HortScience, 55(5), 670–675. https://doi.org/10.21273/HORTSCI14917-20
  • Yokoyama, G., Ono, S., Yasutake, D., Hidaka, K., & Hirota, T. (2023). Diurnal changes in the stomatal, mesophyll, and biochemical limitations of photosynthesis in well-watered greenhouse-grown strawberries. Photosynthetica, 61(1), 1–12. https://doi.org/10.32615/ps.2023.001
  • Yoneda, A., Yasutake, D., Hidaka, K., Muztahidin, N. I., Miyoshi, Y., Kitano, M., & Okayasu, T. (2020). Effects of supplemental lighting during the period of rapid fruit development on the growth, yield, and energy use efficiency in strawberry plant production. International Agrophysics, 34(2), 233–239. https://doi.org/10.31545/INTAGR/117623