250
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in postharvest storage and preservation technology of pitaya (dragon fruit)

ORCID Icon & ORCID Icon
Pages 115-129 | Received 07 Jul 2023, Accepted 13 Sep 2023, Published online: 09 Oct 2023

References

  • Abdel, K. M., El, M. N., & Lashin, S. (2011). Evaluation of grapefruit coating with chemical preservatives as control measure against postharvest decay. Phytopathologia, 59, 25–38.
  • Abd-Elgawad, A. M., El Gendy, A. E. N. G., Assaeed, A. M., Al-Rowaily, S. L., Omer, E. A., Dar, B. A., Al-Taisan, W. A., & Elshamy, A. I. (2020). Essential oil enriched with oxygenated constituents from invasive plant argemone ochroleuca exhibited potent phytotoxic effects. Plants, 9(8), 998. https://doi.org/10.3390/plants9080998
  • Abdi, N., & Mizrahi, Y. (2012). Effects of methyl bromide and storage time on postharvest behavior of three different cultivars of pitaya fruit. Israel Journal of Plant Sciences, 60(3), 319–324.
  • Ali, A., Zahid, N., Manickam, S., Siddiqui, Y., & Alderson, P. G. (2014). Double layer coatings: A new technique for maintaining physico-chemical characteristics and antioxidant properties of dragon fruit during storage. Food and Bioprocess Technology, 7, 2366–2374. https://doi.org/10.1007/s11947-013-1224-3
  • Álvarez-Herrera, J. G., Deaquiz, Y. A., & Herrera, A. O. (2016). Effect of different 1-methylcyclopropene doses on the postharvest period of pitahaya fruits (Selenicereus megalanthus Haw.). Revista Facultad Nacional de Agronomia Medellin, 69(2), 7975–7983. https://doi.org/10.15446/rfna.v69n2.59142
  • Attar, Ş. H., Gündeşli, M. A., Urün, I., Kafkas, S., Kafkas, N. E., Ercisli, S., GE, C., Mlcek, J., & Adamkova, A. (2022). Nutritional analysis of red-purple and white-fleshed pitaya (Hylocereus) species. Molecules, 27(3), 808. https://doi.org/10.3390/molecules27030808
  • Awang, Y. B., Chuni, S. H., Mohamed, M. T. M., Hafiza, Y., & Mohamad, R. B. (2013). Polygalacturonase and pectin methylesterase activities of CaCl2 treated red-fleshed dragon fruit (Hylocereus polyrhizus) harvested at different maturity. American Journal of Agricultural and Biological Science, 8(2), 167–172. https://doi.org/10.3844/ajabssp.2013.167.172
  • Awang, Y., Ghani, M. A. A., Sijam, K., & Mohamad, R. B. (2011). Effect of calcium chloride on anthracnose disease and postharvest quality of red-flesh dragon fruit (Hylocereus polyrhizus). African Journal of Microbiology Researc, 5(29), 5250–5259. https://doi.org/10.5897/AJMR10.541
  • Ba, L. J., Cao, S., Ji, N., Ma, C., Wang, R., & Luo, D. L. (2022). Effects of melatonin treatment on maintenance of the quality of fresh-cut pitaya fruit. International Food Research Journal, 29(4), 796–805. https://doi.org/10.47836/ifrj.29.4.07
  • Ba, L., Cao, S., Ji, N., Ma, C., Wang, R., & Luo, D. (2021). Exogenous melatonin treatment in the postharvest storage of pitaya fruits delays senescence and regulates reactive oxygen species metabolism. Food Science & Technology, 42. https://doi.org/10.1590/fst.15221
  • Balendres, M. A., & Bengoa, J. C. (2019). Diseases of dragon fruit (Hylocereus species): Etiology and current management options. Crop Protection, 126, 104920. https://doi.org/10.1016/j.cropro.2019.104920
  • Balois, M. R., Peña, V. C. B., & Arroyo, P. V. B. (2013). Symptoms and sensitivity to chilling injury of pitahaya (Hylocereus undatus (Haw.) Britton & Rose) fruits during postharvest. Agrociencia, 47(8), 795–813.
  • Beltrán, O. M. C., Oliva, C. T. G., Gallardo, V. T., & Osorio, R. G. (2009). Ascorbic acid, phenolic content and antioxidant capacity red, cherry, yellow and white types of pitahaya cactus fruit (stenocereus stellatus Riccobono). Agrociencia, 43(2), 153–162. https://doi.org/10.1016/j.agee.2008.10.025
  • Ben-Yehoshua, S., Rodov, V. (2003). Transpiration and water stress. In J. Weichmann, J. A. Bartz, & J. K. Brecht (Eds.), Postharvest physiology and pathology of vegetables (2nd ed., pp. 143–179). The United States of America.
  • Bi, X., Dai, Y., Zhou, Z., Xing, Y., & Che, Z. (2022). Combining natamycin and 1-methylcyclopropene with modified atmosphere packaging to evaluate plum (prunus salicina cv.‘Cuihongli’) quality. Postharvest Biology and Technology, 183, 111749. https://doi.org/10.1016/j.postharvbio.2021.111749
  • Bordoh, P. K., Ali, A., Dickinson, M., Siddiqui, Y., & Ansah, F. A. (2022). Bioefficacy of composite medicinal plant extracts and gum arabic on improving postharvest quality in dragon fruit. International Journal of Food Science, 2022, 1–17. https://doi.org/10.1155/2022/3889563
  • Castro, A., Esguerra, E., & Franco, R. K. (2020). Modified atmosphere packaging and low temperature storage of red-fleshed dragon fruit (Hylocereus polyrhizus (Weber) Britton & Rose). Philippine Journal of Crop Science (PJCS), 45(1), 1–10.
  • Chaemsanit, S., Matan, N., & Matan, N. (2018). Effect of peppermint oil on the shelf-life of dragon fruit during storage. Food Control, 90, 172–179. https://doi.org/10.1016/j.foodcont.2018.03.001
  • Chandran, S. (2009). Effect of film packaging in extending shelf life of dragon fruit, Hylocereus undatus and Hylocereus polyrhizus. In Southeast Asia Symposium on Quality and Safety of Fresh and Fresh-Cut Produce, Bangkok, Thailand (Vol. 875, pp. 389–394).
  • Chang, P. T., Hsieh, C. C., & Jiang, Y. L. (2016). Responses of ‘Shih Huo Chuan’ pitaya (Hylocereus polyrhizus (Weber) Britt. & Rose) to different degrees of shading nets. Scientia Horticulturae, 198, 154–162. https://doi.org/10.1016/j.scienta.2015.11.024
  • Chen, Y., Sun, J., Lin, H., Hung, Y. C., Zhang, S., Lin, Y., & Lin, T. (2017). Paper‐based 1‐MCP treatment suppresses cell wall metabolism and delays softening of Huanghua pears during storage. Journal of the Science of Food and Agriculture, 97(8), 2547–2552. https://doi.org/10.1002/jsfa.8072
  • Chien, P. J., Sheu, F., & Lin, H. R. (2007). Quality assessment of low molecular weight chitosan coating on sliced red pitayas. Journal of Food Engineering, 79(2), 736–740. https://doi.org/10.1016/j.jfoodeng.2006.02.047
  • Chuni, S. H., Awang, Y., & Mohamed, M. T. (2010). Cell wall enzymes activities and quality of calcium treated fresh-cut red flesh dragon fruit (Hylocereus polyrhizus). International Journal of Agriculture & Biology, 12(5), 713–718.
  • Coradi, P. C., Maldaner, V., Lutz, É., Da Silva Daí, P. V., & Teodoro, P. E. (2020). Influences of drying temperature and storage conditions for preserving the quality of maize postharvest on laboratory and field scales. Scientific Reports, 10(1), 22006. https://doi.org/10.1038/s41598-020-78914-x
  • da Graca Tomas, M., Rodrigues, L. J., de Almeida Lobo, F., Takeuchi, K. P., de Paula, N. R. F., & Pinto, D. M. (2023). Physicochemical characteristics and volatile profile of pitaya baby (Selenicereus setaceus). South African Journal of Botany, 154, 88–97. https://doi.org/10.1016/j.sajb.2023.01.020
  • David, S., Levin, E., Fallik, E., Alkalai-Tuvia, S., Foolad, M. R., & Lers, A. (2022). Physiological genetic variation in tomato fruit chilling tolerance during postharvest storage. Frontiers in Plant Science, 13, 991983. https://doi.org/10.3389/fpls.2022.991983
  • Deaquiz, Y. A., Álvarez-Herrera, J., & Fischer, G. (2014). Ethylene and 1-MCP affect the postharvest behavior of yellow pitahaya fruits (Selenicereus megalanthus Haw.). Agronomía Colombiana, 32(1), 44–51. https://doi.org/10.15446/agron.colomb.v32n1.41950
  • Deep, L., Narayana, C. K., Karunakaran, G., Rao, D. S., & Anuradha, S. (2022). Maturity determination of red and white pulp dragon fruit. Journal of Horticultural Sciences, 17(1), 157–165. https://doi.org/10.24154/jhs.v17i1.1309
  • De Faria, R. C., Morgado, C. M. A., Vespucci, I. L., & De Campos, A. J. (2022). UV-C radiation in postharvest quality of red dragon fruit. Comunicata Scientiae, 13, 1–10. https://doi.org/10.14295/CS.v13.3857
  • Deniete, S. M., Diogo, M. D. S., José, D. R., Leila, A. S. P., Moacir, P., Eduardo, V. B. V. B., Elaine, C. G., & Evaldo, T. D. M. (2019). Changes in the physical and physico-chemical characteristics of red-pulp dragon fruit during its development. Scientia Horticulturae, 253, 180–186. https://doi.org/10.1016/j.scienta.2019.04.050
  • Ding, X., Zhu, X., Zheng, W., Li, F., Xiao, S., & DUAN, X. (2021). BTH treatment delays the senescence of postharvest pitaya fruit in relation to enhancing antioxidant system and phenylpropanoid pathway. Foods, 10(4), 846. https://doi.org/10.3390/foods10040846
  • Dueñas, G. Y. M., Narváez, C. C. E., & Restrepo, S. L. P. (2009). Heat shock improves refrigerated storage performance of yellow pitaya. Agronomia Colombiana, 27(1), 105–110.
  • Dueñas, G. Y. M., Narváez, C. C. E., & Restrepo, S. L. P. (2012). Yellow pitaya (acanthocereus pitajaya) fruit softening during its storage at room temperature and on refrigerated conditions: Polygalacturonase, cellulase and xylanase activities. Acta Biol Colomb, 17(2), 259–270.
  • Espinal, H. P., Colinas, L. M. T., Ybarra, M. M. C., Méndez, Z. S. M., & Corrales, G. J. (2021). Postharvest effects of 1-mcp and chitosan/oleic acid coating in pitaya (stenocereus griseus H.). Journal of the Professional Association for Cactus Development, 23, 43–57. https://doi.org/10.56890/jpacd.v23i.322
  • Esquivel, P., Stintzing, F. C., & Carle, R. (2007). Phenolic compound profiles and their corresponding antioxidant capacity of purple pitaya (Hylocereus sp.) genotypes. Zeitschrift für Naturforschung C, 62(9–10), 636–644. https://doi.org/10.1515/znc-2007-9-1003
  • Ezra, D., Liarzi, O., Gat, T., Hershcovich, M., & Dudai, M. (2013). First report of internal black rot caused by neoscytalidium dimidiatum on Hylocereus undatus (pitahaya) fruit in Israel. Plant Disease, 97(11), 1513–1513. https://doi.org/10.1094/PDIS-05-13-0535-PDN
  • Fallik, E., Tuvia-Alkalai, S., Feng, X., & Lurie, S. (2001). Ripening characterisation and decay development of stored apples after a short pre-storage hot water rinsing and brushing. Innovative Food Science & Emerging Technologies, 2(2), 127–132. https://doi.org/10.1016/S1466-8564(01)00032-7
  • Feliciano, C. P. (2018). High-dose irradiated food: Current progress, applications, and prospects. Radiation Physics and Chemistry, 144, 34–36. https://doi.org/10.1016/j.radphyschem.2017.11.010
  • Fierascu, R. C., Fierascu, I. C., Dinu, P. C. E., Fierascu, I., & Paunescu, A. (2020). The application of essential oils as a next-generation of pesticides: Recent developments and future perspectives. Zeitschrift für Naturforschung C, 75(7–8), 183–204. https://doi.org/10.1515/znc-2019-0160
  • Franco, R. K., Castro, A., & Esguerra, E. (2022). Harvest maturity affects the quality and storage behavior of white-fleshed dragon fruit [Hylocereus undatus (Haworth) Britton and Rose]. Food Research, 6(2), 423–433. https://doi.org/10.26656/fr.2017.6(2).268
  • Freitas, S. T. D., & Mitcham, E. J. (2013). Quality of pitaya fruit (Hylocereus undatus) as influenced by storage temperature and packaging. Scientia Agricola, 70(4), 257–262. https://doi.org/10.1590/S0103-90162013000400006
  • Gan, S. (2010). The hormonal regulation of senescence. In P. J. Davies (Ed.), Plant Hormones (pp. 597–617). https://doi.org/10.1007/978-1-4020-2686-7_26
  • García, C. L., Dueñas, M., Santos, B. C., Valle, G. S., & Salinas, M. Y. (2017). Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (stenocereus spp.) fruit from two species (S. Pruinosus and S. stellatus). Food Chemistry, 234, 111–118. https://doi.org/10.1016/j.foodchem.2017.04.174
  • Ghani, M. A. A., Awang, Y., & Sijam, K. (2011). Disease occurrence and fruit quality of pre-harvest calcium treated red flesh dragon fruit (Hylocereus polyrhizus). African Journal of Biotechnology, 10(9), 1550–1558.
  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Gonzalez, C., Zanor, M. I., Ré, M. D., Otaiza, S., Asis, R., Valle, E. M., & Boggio, S. B. (2019). Chilling tolerance of micro-tom fruit involves changes in the primary metabolite levels and in the stress response. Postharvest Biology and Technology, 148, 58–67. https://doi.org/10.1016/j.postharvbio.2018.10.010
  • Grierson, W., & Wardowski, W. F. (1978). Relative humidity effects on the postharvest life of fruits and vegetables1. HortScience, 13(5), 570–574. https://doi.org/10.21273/HORTSCI.13.5.570
  • Gularte, P. S., Zanardi, O. Z., Miqueloto, T., De Martin, M. S., Fabiane, K. C., Grutzmann Arcari, S., & Miqueloto, Z. A. (2022). Postharvest conservation of ‘Thomson’ pitaya [Hylocereus undatus (Haw.) Britton and Rose] as a function of storage temperature. Journal of Experimental Agriculture International, 44(4), 31–44. https://doi.org/10.9734/jeai/2022/v44i430814
  • Guo, Y., Chen, X., Gong, P., Wang, R., Qi, Z., Deng, Z., & Li, N. (2023). Advances in postharvest storage and preservation strategies for pleurotus eryngii. Foods, 12(5), 1046. https://doi.org/10.3390/foods12051046
  • Guo, L. W., Wu, Y. X., Ho, H. H., Su, Y. Y., Mao, Z. C., He, P. F., & He, Y. Q. (2014). First report of dragon fruit (Hylocereus undatus) anthracnose caused by colletotrichum truncatum in China. Journal of Phytopathology, 162(4), 272–275. https://doi.org/10.1111/jph.12183
  • Harahap, N. S., Lelo, A., Purba, A., Sibuea, A., Amelia, R., & Zulaini, Z. (2019). The effect of red-fleshed pitaya (Hylocereus polyrhizus) on heat shock protein 70 and cortisol expression in strenuous exercise induced rats. F1000research, 8(130), 1–130: 15. https://doi.org/10.12688/f1000research.17533.1
  • Hoa, T. T., Clark, C. J., Waddell, B. C., & Woolf, A. B. (2006). Postharvest quality of dragon fruit (Hylocereus undatus) following disinfesting hot air treatments. Postharvest Biology and Technology, 41(1), 62–69. https://doi.org/10.1016/j.postharvbio.2006.02.010
  • Ho, P. L., Tran, D. T., Hertog, M. L., & Nicolaï, B. M. (2021). Effect of controlled atmosphere storage on the quality attributes and volatile organic compounds profile of dragon fruit (Hylocereus undatus). Postharvest Biology and Technology, 173, 111406. https://doi.org/10.1016/j.postharvbio.2020.111406
  • Hu, M., Zhu, Y., Liu, G., Gao, Z., Li, M., Su, Z., & Zhang, Z. (2019). Inhibition on anthracnose and induction of defense response by nitric oxide in pitaya fruit. Scientia Horticulturae, 245, 224–230. https://doi.org/10.1016/j.scienta.2018.10.030
  • Jakubczyk, K., Dec, K., Kałduńska, J., Kawczuga, D., Kochman, J., & Janda, K. (2020). Reactive oxygen species-sources, functions, oxidative damage. Polski merkuriusz lekarski: organ Polskiego Towarzystwa Lekarskiego, 48(284), 124–127.
  • Jamaludin, N. A., Ding, P., & Hamid, A. A. (2011). Physico‐chemical and structural changes of red‐fleshed dragon fruit (Hylocereus polyrhizus) during fruit development. Journal of the Science of Food and Agriculture, 91(2), 278–285. https://doi.org/10.1002/jsfa.4182
  • Jiang, Y. L., Chen, L. Y., Lee, T. C., & Chang, P. T. (2020). Improving postharvest storage of fresh red-fleshed pitaya (Hylocereus polyrhizus sp.) fruit by pre-harvest application of CPPU. Scientia Horticulturae, 273, 109646. https://doi.org/10.1016/j.scienta.2020.109646
  • Joshi, M., & Prabhakar, B. (2020). Phytoconstituents and pharmaco‐therapeutic benefits of pitaya: A wonder fruit. Journal of Food Biochemistry, 44(7), e13260. https://doi.org/10.1111/jfbc.13260
  • Kassim, A., & Workneh, T. S. (2020). Influence of postharvest treatments and storage conditions on the quality of Hass avocados. Heliyon, 6(6), e04234. https://doi.org/10.1016/j.heliyon.2020.e04234
  • Kume, T., Furuta, M., Todoriki, S., Uenoyama, N., & Kobayashi, Y. (2009). Status of food irradiation in the world. Radiation Physics & Chemistry, 78(3), 222–226. https://doi.org/10.1016/j.radphyschem.2008.09.009
  • Kunnika, S., & Pranee, A. (2011). Influence of enzyme treatment on bioactive compounds and colour stability of betacyanin in flesh and peel of red dragon fruit Hylocereus polyrhizus (Weber) Britton and Rose. International Food Research Journal, 18(4), 1437.
  • Lana, M. M., Tijskens, L. M. M., & Van, K. O. (2005). Effects of storage temperature and fruit ripening on firmness of fresh cut tomatoes. Postharvest Biology and Technology, 35(1), 87–95. https://doi.org/10.1016/j.postharvbio.2004.07.001
  • Latt, T. T., Lwin, H. P., Seo, H. J., & Lee, J. (2023). 1-methylcyclopropene delays degradation of peel greenness but induces internal physiological disorders in cold-stored fruit of interspecific pears. Scientia Horticulturae, 312, 111852. https://doi.org/10.1016/j.scienta.2023.111852
  • Liaotrakoon, W., De Clercq, N., Van Hoed, V., Van de Walle, D., Lewille, B., Dewettinck, K., & Dewettinck, K. (2013). Impact of thermal treatment on physicochemical, antioxidative and rheological properties of white-flesh and red-flesh dragon fruit (Hylocereus spp.) purees. Food and Bioprocess Technology, 6(2), 416–430. https://doi.org/10.1007/s11947-011-0722-4
  • Li, Y., Chen, H., Ma, L., An, Y., Wang, H., & Wu, W. (2022). Laboratory screening of control agents against isolated fungal pathogens causing postharvest diseases of pitaya in Guizhou, China. Frontiers in Chemistry, 10, 942185. https://doi.org/10.3389/fchem.2022.942185
  • Li, L., Lichter, A., Chalupowicz, D., Gamrasni, D., Goldberg, T., Nerya, O., Ben-Arie, R., & Porat, R. (2016). Effects of the ethylene-action inhibitor 1-methylcyclopropene on postharvest quality of non-climacteric fruit crops. Postharvest Biology and Technology, 111, 322–329. https://doi.org/10.1016/j.postharvbio.2015.09.031
  • Li, X., Li, M., Han, C., JIN, P., & Zheng, Y. (2017). Increased temperature elicits higher phenolic accumulation in fresh-cut pitaya fruit. Postharvest Biology and Technology, 129, 90–96. https://doi.org/10.1016/j.postharvbio.2017.03.014
  • Li, X., Li, M., Ji, N., Jin, P., Zhang, J., Zheng, Y., & Li, F. (2019). Cold plasma treatment induces phenolic accumulation and enhances antioxidant activity in fresh-cut pitaya (Hylocereus undatus) fruit. Lwt, 115, 108447. https://doi.org/10.1016/j.lwt.2019.108447
  • Li, Z., Li, B., Li, M., Fu, X., Zhao, X., Min, D., & Zhang, X. (2022). Hot air pretreatment alleviates browning of fresh-cut pitaya fruit by regulating phenylpropanoid pathway and ascorbate-glutathione cycle. Postharvest Biology and Technology, 190, 111954. https://doi.org/10.1016/j.postharvbio.2022.111954
  • Li, B., Li, M., Liu, J., Sun, W., Min, D., Li, F., & Li, X. (2023). Methyl salicylate pretreatment maintains quality and antioxidant capacity of fresh-cut pitaya fruit by modulating phenylpropanoid metabolism and antioxidant system. Scientia Horticulturae, 309, 111705. https://doi.org/10.1016/j.scienta.2022.111705
  • Li, X., Li, M., Wang, J., Wang, L., Han, C., Jin, P., & Zheng, Y. (2018). Methyl jasmonate enhances wound-induced phenolic accumulation in pitaya fruit by regulating sugar content and energy status. Postharvest Biology and Technology, 137, 106–112. https://doi.org/10.1016/j.postharvbio.2017.11.016
  • Li, G., Meng, F., Wei, X., & Lin, M. (2019). Postharvest dipping treatment with BABA induced resistance against rot caused by Gilbertella persicaria in red pitaya fruit. Scientia Horticulturae, 257, 108713. https://doi.org/10.1016/j.scienta.2019.108713
  • Lin, Y., Lin, Y., Lin, H., Lin, M., Li, H., Yuan, F., Xiao, J., & Xiao, J. (2018). Effects of paper containing 1-MCP postharvest treatment on the disassembly of cell wall polysaccharides and softening in Younai plum fruit during storage. Food Chemistry, 264, 1–8. https://doi.org/10.1016/j.foodchem.2018.05.031
  • Liu, R., Gao, H., Chen, H., Fang, X., & Wu, W. (2018). Isolation, identification and inhibition of pathogens from red pitaya fruit during storage. Transactions of the Chinese Society for Agricultural Machinery, 21(05), 345–352. https://doi.org/10.6041/j.issn.1000-1298.2018.08.040
  • Liu, R., Gao, H., Chen, H., Fang, X., & Wu, W. (2019). Synergistic effect of 1-methylcyclopropene and carvacrol on preservation of red pitaya (Hylocereus polyrhizus). Food Chemistry, 283, 588–595. https://doi.org/10.1016/j.foodchem.2019.01.066
  • Liu, J., Wu, W. J., Gao, H. Y., Liu, R. L., Han, Q., & Chen, H. J. (2017). Effects of different storage temperatures on quality and microorganism of fresh-cut pitaya. Journal of Chinese Institute of Food Science and Technology, 17(10), 168–175.
  • Lum, M. S., & Norazira, M. A. (2011). Effects of hot water, submergence time and storage duration on quality of dragon fruit (hylocereus polyrhizus). Journal of Agricultural Science, 3(1), 146. https://doi.org/10.5539/jas.v3n1p146
  • Lunn, J. E., & Macrae, E. (2003). New complexities in the synthesis of sucrose. Current Opinion in Plant Biology, 6(3), 208–214. https://doi.org/10.1016/S1369-5266(03)00033-5
  • Mallik, B., Hossain, M., & Rahim, M. A. (2018). Influences of variety and flowering time on some physio-morphological and chemical traits of dragon fruit (Hylocereus spp.). Journal of Horticulture and Postharvest Research, 1(2), 115–130.
  • Mami, Y., Peyvast, G., Ziaie, F., Ghasemnezhad, M., & Salmanpour, V. (2014). Improvement of shelf life and postharvest quality of white button mushroom by electron beam irradiation. Journal of Food Processing and Preservation, 38(4), 1673–1681. https://doi.org/10.1111/jfpp.12129
  • Matabura, V. V. (2022). Modelling of firmness variability of jonagold apple during postharvest storage. Journal of Food Science and Technology, 59(4), 1487–1498. https://doi.org/10.1007/s13197-021-05159-5
  • Matan, N., Puangjinda, K., Phothisuwan, S., & Nisoa, M. (2015). Combined antibacterial activity of green tea extract with atmospheric radio-frequency plasma against pathogens on fresh-cut dragon fruit. Food Control, 50, 291–296. https://doi.org/10.1016/j.foodcont.2014.09.005
  • Meetum, P., Leksomboon, C., & Kanjanamaneesathian, M. (2015). First report of colletotrichum aenigma and C. siamense, the causal agents of anthracnose disease of dragon fruit in Thailand. Journal of Plant Pathology, 97(2), 402.
  • Min, D., Li, F., Zhang, X., Shu, P., Cui, X., Dong, L., & Li, J. (2018). Effect of methyl salicylate in combination with 1‐methylcyclopropene on postharvest quality and decay caused by botrytis cinerea in tomato fruit. Journal of the Science of Food and Agriculture, 98(10), 3815–3822. https://doi.org/10.1002/jsfa.8895
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9
  • Mustafa, M. A., Ali, A., Seymour, G., & Tucker, G. (2018). Treatment of dragonfruit (Hylocereus polyrhizus) with salicylic acid and methyl jasmonate improves postharvest physico-chemical properties and antioxidant activity during cold storage. Scientia Horticulturae, 231, 89–96. https://doi.org/10.1016/j.scienta.2017.09.041
  • Namsri, S., Pongprasert, N., & Srilaong, V. (2016). Effect of coating solution containing rice bran wax on postharvest quality of dragon fruit. II Asian Horticultural Congress, 1208(1208), 385–392. https://doi.org/10.17660/ActaHortic.2018.1208.53
  • Neog, T., Barua, P. C., Sharma, S., Hazarika, B., Saikia, B., & Das, K. (2023). Role of modified atmospheric packaging in enhancing the shelf life and physical qualities of pitaya fruit (Hylocereus spp.). Journal of Pharmaceutical Innovation, 12(1), 146–151. https://doi.org/10.22271/tpi.2023.v12.i1b.18523
  • Nerd, A., Gutman, F., & Mizrahi, Y. (1999). Ripening and postharvest behaviour of fruits of two hylocereus species (cactaceae). Postharvest Biology and Technology, 17(1), 39–45. https://doi.org/10.1016/S0925-5214(99)00035-6
  • Nguyen, H. T., Boonyaritthongchai, P., Buanong, M., Supapvanich, S., & Wongs-Aree, C. (2021). Chitosan-and κ-carrageenan-based composite coating on dragon fruit (Hylocereus undatus) pretreated with plant growth regulators maintains bract chlorophyll and fruit edibility. Scientia Horticulturae, 281, 109916. https://doi.org/10.1016/j.scienta.2021.109916
  • Nguyen, N. P., Tung, T., Clark, C. J., & Woolf, A. B. (2014). Effect of storage temperature and low temperature conditioning on quality and chilling injury of ‘LĐ1’ red fleshed dragon fruit. Acta Horticulturae, 1213, 123–128. https://doi.org/10.17660/ActaHortic.2018.1213.16
  • Nimitkeatkai, H., & Kulthip, J. (2016). Effect of sequential UV-C irradiation on microbial reduction and quality of fresh-cut dragon fruit. International Food Research Journal, 23(4), 1818.
  • Ninio, R., Lewinsohn, E., Mizrahi, Y., & Sitrit, Y. (2003). Changes in sugars, acids, and volatiles during ripening of koubo [cereus peruvianus (L.) Miller] fruits. Journal of Agricultural and Food Chemistry, 51(3), 797–801. https://doi.org/10.1021/jf020840s
  • Nishikito, D. F., Borges, A. C. A., Laurindo, L. F., Otoboni, A. M. B., Direito, R., Goulart, R. D. A., BARBALHO, S. M., Fiorini, A. M. R., Sinatora, R. V., & Barbalho, S. M. (2023). Anti-inflammatory, antioxidant, and other health effects of dragon fruit and potential delivery systems for its bioactive compounds. Pharmaceutics, 15(1), 159. https://doi.org/10.3390/pharmaceutics15010159
  • Nizamlioğlu, N. M., Ünver, A., & Kadakal, Ç. (2021). Mineralstoffgehalt von Samen der in der Türkei angebauten Drachenfrucht (Hylocereus polyrhizus und Hylocereus undatus). Erwerbs-Obstbau, 63(2), 209–213. https://doi.org/10.1007/s10341-021-00561-x
  • Nur, M. A., Uddin, M. R., Uddin, M. J., Satter, M. A., & Amin, M. Z. (2023). Physiochemical and nutritional analysis of the two species of dragon fruits (Hylocereus sp.) cultivated in Bangladesh. South African Journal of Botany, 155, 103–109. https://doi.org/10.1016/j.sajb.2023.02.006
  • Obenland, D., Cantwell, M., Lobo, R., Collin, S., Sievert, J., & Arpaia, M. L. (2016). Impact of storage conditions and variety on quality attributes and aroma volatiles of pitahaya (Hylocereus spp.). Scientia Horticulturae, 199, 15–22. https://doi.org/10.1016/j.scienta.2015.12.021
  • Ortiz, T. A., & Takahashi, L. S. A. (2015). Physical and chemical characteristics of pitaya fruits at physiological maturity. Genetics and Molecular Research, 14(4), 14422–14439. https://doi.org/10.4238/2015.November.18.5
  • Osuna Enciso, T., Ibarra Zazueta, M. E., Muy Rangel, M. D., Valdez Torres, J. B., Villarreal Romero, M., Hernández Verdugo, S., & Hernández, V. S. (2011). Postharvest quality of pitahaya (Hylocereus undatus haw.) fruits harvested in three maturity stages. Revista Fitotecnia Mexicana, 34(1), 63–72. https://doi.org/10.35196/rfm.2011.1.63
  • Pascual, M. L. P., Peralta, E. K., Yaptenco, K. F., Elauria, J. C., Esguerra, E. B., & Esguerra, E. B. (2017). Passive modified atmosphere packaging for low temperature storage of white flesh variety dragon fruit (Hylocereus undatus (Haw.) Britton & Rose). Journal of Agricultural Engineering-Italy, 30–41. https://biomech.ceat.uplb.edu.ph/
  • Pires, I. V., Sakurai, Y. C. N., Ferreira, N. R., Moreira, S. G. C., da Cruz Rodrigues, A. M., & da Silva, L. H. M. (2022). Elaboration and characterization of natural deep eutectic solvents (NADESs): Application in the extraction of phenolic compounds from pitaya. Molecules, 27(23), 8310. https://doi.org/10.3390/molecules27238310
  • Plaza, P., Torres, R., Usall, J., Lamarca, N., & Vinas, I. (2004). Evaluation of the potential of commercial post-harvest application of essential oils to control citrus decay. Journal of Horticultural Science and Biotechnology, 79(6), 935–940. https://doi.org/10.1080/14620316.2004.11511869
  • Pott, D. M., Vallarino, J. G., & Osorio, S. (2020). Metabolite changes during postharvest storage: Effects on fruit quality traits. Metabolites, 10(5), 187. https://doi.org/10.3390/metabo10050187
  • Punitha, V., Boyce, A. N., & Chandran, S. (2009). Effect of storage temperatures on the physiological and biochemical properties of Hylocereus polyrhizus. In Southeast Asia Symposium on Quality and Safety of Fresh and Fresh-Cut Produce, Bangkok, Thailand (Vol. 875, pp. 137–144).
  • Quan, L. J., Zhang, B., Shi, W. W., & Li, H. Y. (2008). Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network. Journal of Integrative Plant Biology, 50(1), 2–18. https://doi.org/10.1111/j.1744-7909.2007.00599.x
  • Ren, L., Qian, L., Xue, M., Peng, C., Chen, N., Zhan, G., & Liu, B. (2022). Vapor heat treatment against planococcus lilacinus Cockerell (Hemiptera: Pseudococcidae) on dragon fruit. Pest Management Science, 78(1), 150–158. https://doi.org/10.1002/ps.6616
  • Rinaldi, M. M., Dianese, A. D. C., Costa, A. M., Assis, D. F. D. O. D. S., Oliveira, T. A. R. D., Assis, S. F. D. O., & Assis, S. F. D. O. (2019). Post-harvest conservation of passiflora alata fruits under ambient and refrigerated condition. Food Science & Technology, 39(4), 889–896. https://doi.org/10.1590/fst.14018
  • Rita, W. S., Suprapta, D. N., Sudana, I. M., & Swantara, I. M. D. (2013). First report on Fusarium solani, a pathogenic fungus causing stem rot disease on dragon fruits (Hylocereus sp.) in Bali. Journal of Biology, Agriculture and Healthcare, 3(17), 93–99.
  • Roberts, P. B. (2014). Food irradiation is safe: Half a century of studies. Radiation Physics and Chemistry, 105, 78–82. https://doi.org/10.1016/j.radphyschem.2014.05.016
  • Roriz, C. L., Heleno, S. A., Alves, M. J., Oliveira, M. B. P., Pinela, J., Dias, M. I., & Barros, L. (2022). Red pitaya (Hylocereus costaricensis) peel as a source of valuable molecules: Extraction optimization to recover natural colouring agents. Food Chemistry, 372, 131344. https://doi.org/10.1016/j.foodchem.2021.131344
  • Saavedra, G. M., Figueroa, N. E., Poblete, L. A., Cherian, S., & Figueroa, C. R. (2016). Effects of preharvest applications of methyl jasmonate and chitosan on postharvest decay, quality and chemical attributes of fragaria chiloensis fruit. Food Chemistry, 190, 448–453. https://doi.org/10.1016/j.foodchem.2015.05.107
  • Sarker, U., & Oba, S. (2020). The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Frontiers in Plant Science, 11, 559876. https://doi.org/10.3389/fpls.2020.559876
  • Sheng, K., Wei, S., Mei, J., & Xie, J. (2021). Chilling injury, physicochemical properties, and antioxidant enzyme activities of red pitahaya (Hylocereus polyrhizus) fruits under cold storage stress. Phyton, 90(1), 291. https://doi.org/10.32604/phyton.2020.012985
  • Shin, Y., Liu, R. H., Nock, J. F., Holliday, D., & Watkins, C. B. (2007). Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biology and Technology, 45(3), 349–357. https://doi.org/10.1016/j.postharvbio.2007.03.007
  • Tang, W., Li, W., Yang, Y., Lin, X., Wang, L., Li, C., & Yang, R. (2021). Phenolic compounds profile and antioxidant capacity of pitahaya fruit peel from two red-skinned species (Hylocereus polyrhizus and Hylocereus undatus). Foods, 10(6), 1183. https://doi.org/10.3390/foods10061183
  • Tauffenberger, A., & Magistretti, P. J. (2021). Reactive oxygen species: Beyond their reactive behavior. Neurochemical Research, 46(1), 77–87. https://doi.org/10.1007/s11064-020-03208-7
  • Tavarini, S., Degl’innocenti, E., Remorini, D., Massai, R., & Guidi, L. (2009). Polygalacturonase and β-galactosidase activities in Hayward kiwifruit as affected by light exposure, maturity stage and storage time. Scientia Horticulturae, 120(3), 342–347. https://doi.org/10.1016/j.scienta.2008.11.013
  • Ugarte, N., Petropoulos, I., & Friguet, B. (2010). Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxidants & Redox Signaling, 13(4), 539–549. https://doi.org/10.1089/ars.2009.2998
  • Van, T. L., Ngu, N., Duc, N. D., & Huong, H. T. T. (2000). Dragon fruit quality and storage life: Effect of harvesting time, use of plant growth regulators and modified atmosphere packaging. Acta horticulturae, 575, 611–621. https://doi.org/10.17660/ActaHortic.2002.575.72
  • Vargas-Vargas, L., Tamayo-Canul, E., Centurión-Yah, A. R., Cortes, J. T., Veloz, C. S., & Duch, E. S. (2010). Quality changes and shelf life of fresh-cut pitahaya (Hylocereus undatus) slice through packaging and low temperature storage. Acta Horticulturae, 864, 445–451. https://doi.org/10.17660/ActaHortic.2010.864.61
  • Velásquez Cedeño, S. D. R., Guillen Mendoza, S. V., Cedeño García, G. A., Mendoza Vargas, J. J., & Ormaza Cedeño, K. P. (2019). Post harvest quality of dragon fruit (Hylocereus undatus Haw.) in three maturity stages. Revista Espamciencia, 10(1), 8–13.
  • Vicente, A. R., Martı́nez, G. A., Civello, P. M., & Chaves, A. R. (2002). Quality of heat-treated strawberry fruit during refrigerated storage. Postharvest Biology and Technology, 25(1), 59–71. https://doi.org/10.1016/S0925-5214(01)00142-9
  • Vilaplana, R., Alba, P., & Valencia, C. S. (2018). Sodium bicarbonate salts for the control of postharvest black rot disease in yellow pitahaya (Selenicereus megalanthus). Crop Protection, 114, 90–96. https://doi.org/10.1016/j.cropro.2018.08.021
  • Vilaplana, R., Páez, D., & Valencia, C. S. (2017). Control of black rot caused by Alternaria alternata in yellow pitahaya (Selenicereus megalanthus) through hot water dips. LWT-Food Science and Technology, 82, 162–169. https://doi.org/10.1016/j.lwt.2017.04.042
  • Walia, S., & Kumar, R. (2021). Wild marigold (tagetes minuta L.) biomass and essential oil composition modulated by weed management techniques. Industrial Crops and Products, 161, 113183. https://doi.org/10.1016/j.indcrop.2020.113183
  • Wall, M. M., & Khan, S. A. (2008). Postharvest quality of dragon fruit (Hylocereus spp.) after X-ray irradiation quarantine treatment. HortScience, 43(7), 2115–2119. https://doi.org/10.21273/HORTSCI.43.7.2115
  • Wang, S. Y., Shi, X. C., Wang, R., Wang, H. L., Liu, F., & Laborda, P. (2020). Melatonin in fruit production and postharvest preservation: A review. Food Chemistry, 320, 126642. https://doi.org/10.1016/j.foodchem.2020.126642
  • Wu, Q., Gao, H., You, Z., Zhang, Z., Zhu, H., He, M., He, J., Duan, X., Jiang, Y., & Yun, Z. (2023). Multiple metabolomics comparatively investigated the pulp breakdown of four dragon fruit cultivars during postharvest storage. Food Research International, 164, 112410. https://doi.org/10.1016/j.foodres.2022.112410
  • Wu, F., Jiang, G., Yan, H., Xiao, L., Liang, H., Zhang, D., & Duan, X. (2021). Redox regulation of glutathione peroxidase by thioredoxin in longan fruit in relation to senescence and quality deterioration. Food Chemistry, 345, 128664. https://doi.org/10.1016/j.foodchem.2020.128664
  • Wu, Q., Zhang, Z., Zhu, H., Li, T., Zhu, X., Gao, H., Yun, Z., & Jiang, Y. (2019). Comparative volatile compounds and primary metabolites profiling of pitaya fruit peel after ozone treatment. Journal of the Science of Food and Agriculture, 99(5), 2610–2621. https://doi.org/10.1002/jsfa.9479
  • Wu, Q., Zhou, Y., Zhang, Z., Li, T., Jiang, Y., Gao, H., & Yun, Z. (2020). Effect of blue light on primary metabolite and volatile compound profiling in the peel of red pitaya. Postharvest Biology and Technology, 160, 111059. https://doi.org/10.1016/j.postharvbio.2019.111059
  • Wybraniec, S., & Mizrahi, Y. (2002). Fruit flesh betacyanin pigments in hylocereus cacti. Journal of Agricultural and Food Chemistry, 50(21), 6086–6089. https://doi.org/10.1021/jf020145k
  • Xu, Y., Cai, Z., Ba, L., Qin, Y., Su, X., Luo, D., Shan, W., Kuang, J., Lu, W., Li, L., Chen, J., & Zhao, Y. (2021). Maintenance of postharvest quality and reactive oxygen species homeostasis of pitaya fruit by essential oil p-anisaldehyde treatment. Foods, 10(10), 2434. https://doi.org/10.3390/foods10102434
  • Yao, L., Zhang, T., Peng, S., Xu, D., Liu, Z., Li, H., Hu, L., & Mo, H. (2022). Fe2+ protects postharvest pitaya (Hylocereus undulatus britt) from Aspergillus. flavus infection by directly binding its genomic DNA. Food Chemistry: Molecular Sciences, 5, 100135. https://doi.org/10.1016/j.fochms.2022.100135
  • Yi, R. H., Ling Lin, Q., Mo, J. J., Wu, F. F., & Chen, J. (2015). Fruit internal brown rot caused by neoscytalidium dimidiatum on pitahaya in Guangdong province, China. Australasian Plant Disease Notes, 10, 1–4. https://doi.org/10.1007/s13314-015-0166-1
  • Yong, A. C. (2009). The effect of hot water treatment, different packaging methods and storage temperatures on shelf life of dragon fruit (Hylocereus polyrhizus). FASM.
  • Zahid, N., Ali, A., Alderson, P. G., Maqbool, M., & Manickam, S. (2012). Dual mode of action of ethanolic extract of propolis (EEP) for the control of postharvest anthracnose in dragon fruits. In VII International Postharvest Symposium, Kuala Lumpur, Malaysia (Vol. 1012, pp. 711–717).
  • Zahid, N., Ali, A., Siddiqui, Y., & Maqbool, M. (2013). Efficacy of ethanolic extract of propolis in maintaining postharvest quality of dragon fruit during storage. Postharvest Biology and Technology, 79, 69–72. https://doi.org/10.1016/j.postharvbio.2013.01.003
  • Zainoldin, K. H., & Baba, A. S. (2009). The effect of Hylocereus polyrhizus and Hylocereus undatus on physicochemical, proteolysis, and antioxidant activity in yogurt. World Academy of Science: Engineering and Technology, 60(3), 361–366.
  • Zhang, S., Sun, H., Wang, J., Shen, J., He, F., Chen, D., & Wang, Y. (2022). The regulatory mechanisms and control technologies of chilling injury and fungal diseases of postharvest loquat fruit. Plants, 11(24), 3472. https://doi.org/10.3390/plants11243472

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.