100
Views
0
CrossRef citations to date
0
Altmetric
Article

Genome-wide identification of pseudo-response regulator (PRR) family members in cabbage (Brassica oleracea var. capitata L.) and their expression in response to abiotic stress

, , &
Pages 168-178 | Received 08 Jun 2023, Accepted 16 Sep 2023, Published online: 12 Oct 2023

References

  • Ahmed, N. U., Jung, H. J., Park, J. I., Cho, Y. G., Hur, Y., & Nou, I. S. (2015). Identification and expression analysis of cold and freezing stress responsive genes of Brassica oleracea. Gene, 554(2), 215–223. https://doi.org/10.1016/j.gene.2014.10.050
  • Beales, J., Turner, A., Griffiths, S., Snape, J. W., & Laurie, D. A. (2007). A pseudo-response regulator is misexpressed in the photoperiod insensitive ppd-D1a mutant of wheat (triticum aestivum L.). (TAG) Theoretical and Applied Genetics Theoretische Und Angewandte Genetik, 115(5), 721–733. https://doi.org/10.1007/s00122-007-0603-4
  • Chou, K.-C., Shen, H., & Newbigin, E. (2010). Plant-mPloc: A top-down strategy to augment the Power for Predicting Plant protein subcellular localization.PLoS. PLoS ONE, 5(6), e11335. https://doi.org/10.1371/journal.pone.0011335
  • Ding, Y. L., Shi, Y. T., & Yang, S. H. (2020). Molecular regulation of plant responses to environmental temperatures. Molecular Plant, 13(4), 544–564. https://doi.org/10.1016/j.molp.2020.02.004
  • Dong, T., & Hwang, I. (2014). Contribution of ABA UDP-glucosyltransferases in coordination of ABA biosynthesis and catabolism for ABA homeostasis. Plant Signaling & Behavior, 9(7), e28888. https://doi.org/10.4161/psb.28888
  • Farré, E. M., & Liu, T. (2013). The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Current Opinion in Plant Biology, 16(5), 621–629. https://doi.org/10.1016/j.pbi.2013.06.015
  • Gol, L., Haraldsson, E. B., & von Korff, M. (2021). Ppd-H1 integrates drought stress signals to control spike development and flowering time in barley. Journal of Experimental Botany, 72(1), 122–136. https://doi.org/10.1093/jxb/eraa261
  • Guan, S. J., Wang, N., Xu, R. R., Ge, T. T., Gao, J., Yan, Y. G., Zhang, G., Chen, Y., & Zhang, M. Y. (2021). Identification and expression analysis of PRR gene family in Glycyrrhiza uralensis. Journal of Agricultural Science & Technology, 23(12), 66–75.
  • Hwang, I., Chen, H. C., & Sheen, J. (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiology, 129(2), 500–515. https://doi.org/10.1104/pp.005504
  • Ito, S., Matsushika, A., Yamada, H., Sato, S., Kato, T., Tabata, S., Yamashino, T., & Mizuno, T. (2003). Characterization of the APRR9 pseudoresponse regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant & Cell Physiology, 44(11), 1237–1245. https://doi.org/10.1093/pcp/pcg136
  • Kiba, T., Henriques, R., Sakakibara, H., & Chua, N. H. (2007). Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. The Plant Cell, 19(8), 2516–2530. https://doi.org/10.1105/tpc.107.053033
  • Kim, Y., Hwang, I., Jung, H. J., Park, J. I., Kang, J. G., & Nou, I. S. (2016). Genome-wide classification and abiotic stress-responsive expression profiling of carotenoid oxygenase genes in Brassica rapa and Brassica oleracea. Journal of Plant Growth Regulation, 35(1), 202–214. https://doi.org/10.1007/s00344-015-9520-y
  • Kim, W. Y., Salomé, P. A., Fujiwara, S., Somers, D. E., & McClung, C. R. (2010). Characterization of pseudo-response regulators in plants. Methods in Enzymology, 471, 357–378. https://doi.org/10.1016/S0076-6879(10)71019-3
  • Kim, N. S., Yu, J., Bae, S., Kim, H. S., Park, S., Lee, K., Lee, S. I., & Kim, J. A. (2022). Identification and characterization of PSEUDO-RESPONSE REGULATOR (PRR) 1a and 1b genes by CRISPR/Cas9-targeted mutagenesis in Chinese cabbage (Brassica rapa L.). International Journal of Molecular Sciences, 23(13), 6963. https://doi.org/10.3390/ijms23136963
  • Legnaioli, T., Cuevas, J., & Mas, P. (2009). TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. The EMBO Journal, 28(23), 3745–3757. https://doi.org/10.1038/emboj.2009.297
  • Li, H., Feng, D. L., Tan, W. W., Li, N., Wang, Y. H., Shen, S. X., & Zhao, J. J. (2021). Cloning and expression pattern analysis of circadian clock related gene BrPRR7 in Brassica rapa. Journal of University of Hebei, 44(4), 28–34.
  • Li, J., Liu, Y. H., Zhang, Y., Chen, C., Yu, X., & Yu, S. W. (2017). Drought stress modulates diurnal oscillations of circadian clock and drought-responsive genes in Oryza sativa L. Hereditas (Beijing), 39(9), 837–846.
  • Lim, J., Lim, C. W., & Lee, S. C. (2021). Pepper novel pseudo response regulator protein CaPRR2 modulates drought and high salt tolerance. Frontiers in Plant Science, 12, 736421. https://doi.org/10.3389/fpls.2021.736421
  • Lin, X. L., Bao, H., Weller, J. L., Abe, J., & Kong, F. J. (2021). Molecular mechanisms for the photoperiodic regulation of flowering in soybean. Journal of Integrative Plant Biology, 63(6), 981–994. https://doi.org/10.1111/jipb.13021
  • Lin, H., Zhang, Q. R., Cao, J. S., Qiu, B. Y., Zhu, H. S., & Wen, Q. F. (2022). Selection of suitable reference genes for real-time qPCR gene expression in cauliflower under abiotic stress and methyl jasmonate treatment. Biologia Plantarum, 66, 46–55. https://doi.org/10.32615/bp.2021.057
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 25(4), 402–408.
  • Li, B. B., Wang, X. H., Wang, X. F., & Xi, Z. M. (2023). An AP2/ERF transcription factor VvERF63 positively regulates cold tolerance in Arabidopsis and grape leaves. Environmental and Experimental Botany, 205, 105124. https://doi.org/10.1016/j.envexpbot.2022.105124
  • Li, D. H., Wu, D., Li, S. Z., Dai, Y., & Cao, Y. P. (2019). Evolutionary and functional analysis of the plant-specific NADPH oxidase gene family in Brassica rapa L. Royal Society Open Science, 6(2), 181727. https://doi.org/10.1098/rsos.181727
  • Marcolino-Gomes, J., Rodrigues, F. A., Fuganti-Pagliarini, R., Bendix, C., Nakayama, T. J., Celaya, B., Molinari, H. B., de Oliveira, M. C., Harmon, F. G., & Nepomuceno, A. L. (2014). Diurnal oscillations of soybean circadian clock and drought responsive genes. PLoS ONE, 9(1), e86402. https://doi.org/10.1371/journal.pone.0086402
  • Matsushika, A., Makino, S., Kojima, M., & Mizuno, T. (2000). Circadian waves of expression of the APRR1/TOC1 family of pseudo response regulators in Arabidopsis thaliana: Insight into the plant circadian clock. Plant & Cell Physiology, 41(9), 1002–1012. https://doi.org/10.1093/pcp/pcd043
  • Matsushika, A., Murakami, M., Ito, S., Nakamichi, N., Yamashino, T., & Mizuno, T. (2007). Characterization of circadian-associated pseudo-response regulators: I comparative studies on a series of transgenic lines misexpressing five distinctive PRR genes in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry, 71(2), 527–534. https://doi.org/10.1271/bbb.60583
  • Ming, R., Hou, S. B., Feng, Y., Yu, Q., Dionne-Laporte, A., Saw, J. H., Senin, P., Wang, W., Ly, B. V., Lewis, K. L. T., Salzberg, S. L., Feng, L., Jones, M. R., Skelton, R. L., Murray, J. E., Chen, C., Qian, W., Shen, J. … Wang, L. (2008). The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 452(7190), 991–996. https://doi.org/10.1038/nature06856
  • Mizuno, T. (2005). Two-component phosphorelay signal transduction systems in plants: From hormone responses to circadian rhythms. Bioscience, Biotechnology, and Biochemistry, 69(12), 2263–2276. https://doi.org/10.1271/bbb.69.2263
  • Murakami, M., Ashikari, M., Miura, K., Yamashino, T., & Mizuno, T. (2003). The evolutionarily conserved OsPRR quintet: Rice pseudoresponse regulators implicated in circadian rhythm. Plant & Cell Physiology, 44(11), 1229–1236. https://doi.org/10.1093/pcp/pcg135
  • Nakamichi, N., Kudo, T., Makita, N., Kiba, T., Kinoshita, T., & Sakakibara, H. J. B. (2020). Flowering time control in rice by introducing Arabidopsis clock-associated PSEUDO-RESPONSE REGULATOR 5. Bioscience, Biotechnology, and Biochemistry, 84(5), 970–979. https://doi.org/10.1080/09168451.2020.1719822
  • Nakamichi, N., Kusano, M., Fukushima, A., Kita, M., Ito, S., Yamashino, T., Saito, K., Sakakibara, H., & Mizuno, T. (2009). Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant & Cell Physiology, 50(3), 447–462. https://doi.org/10.1093/pcp/pcp004
  • Nakamichi, N., Takao, S., Kudo, T., Kiba, T., Wang, Y., Kinoshita, T., & Sakakibara, H. (2016). Improvement of Arabidopsis biomass and cold, drought and salinity stress tolerance by modified circadian clock-associated PSEUDO-RESPONSE REGULATORs. Plant & Cell Physiology, 57(5), 1085–1097. https://doi.org/10.1093/pcp/pcw057
  • Sanchez, S. E., Rugnone, M. L., & Kay, S. A. (2020). Light perception: A matter of time. Molecular Plant, 13(3), 363–385. https://doi.org/10.1016/j.molp.2020.02.006
  • Sathai, S. B., Yamashino, T., Okada, R., Nomoto, Y., Mizuno, T., Tezuka, Y., Itoh, T., Tomita, M., Otsuki, S., & Setsuyuki, A. (2011). Pseudo-response regulator (PRR) homologues of the moss physcomitrella patens: Insights into the evolution of the PRR family in land plants. DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 18(1), 39–52. https://doi.org/10.1093/dnares/dsq033
  • Shanmugam, A., Thamilarasan, S. K., Park, J., Jung, M. Y., Nou, I., & Cloutier, S. (2016). Characterization and abiotic stress-responsive expression analysis of SGT1 genes in Brassica oleracea. Genome, 59(4), 243–251. https://doi.org/10.1139/gen-2015-0128
  • Su, R. Q., Dossou, S. S. K., Dossa, K., Zhou, R., Liu, A. L., Zhong, Y. P., Fang, S., Zhang, X. R., Wu, Z. M., & You, J. (2022). Genome-wide characterization and identification of candidate ERF genes involved in various abiotic stress responses in sesame (sesamum indicum L.). BMC Plant Biology, 22(1), 256–272. https://doi.org/10.1186/s12870-022-03632-7
  • Wang, Z. Y., Cheng, Z. P., Gu, W. Z., Zhao, H. X., Ge, Q., Yang, D. M., Zhao, W. Y., Yang, Z. Y., Chen, L. Q., & Hu, H. Z. (2022). Genome-wide identification and expression pattern of the PRR gene family under various abiotic stresses in lotus (Nelumbo nucifera G.). Genomics and Applied Biology, 42(01), 60–72.
  • Wang, C. L., Wang, L. L., Liu, Q. Q., Zhang, Y. L., & Dong, K. Q. (2022). Genome-wide identification and characterization of PRR gene family and their diurnal rhythmic expression profile in maize. International Journal of Genomics, 2022, 1–16. https://doi.org/10.1155/2022/6941607
  • Wei, H., Wang, X. L., He, Y. Q., Xu, H., & Wang, L. (2021). Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis. The EMBO Journal, 40(3), e105086. https://doi.org/10.15252/embj.2020105086
  • Xu, J. M., Jiang, H. Z., Lin, H., Huang, M. M., Fu, Q. L., Zeng, D. L., & Rao, Y. C. (2016). EARLY SENESCENCE 1 participates in the expression regulation of circadian clock genes and response to stress in rice. Chinese Bulletin Botanical Research, 51(6), 743–756.
  • Yang, X. Y., Zhao, S., Ge, W. D., Wang, T. H., Fan, Z. Y., & Wang, Y. S. (2016). Genome-wide identification and expression analysis of the WRKY gene family in cabbage (Brassica oleracea var. capitata L.). Biotechnology & Biotechnological Equipment, 36(1), 759–772. https://doi.org/10.1080/13102818.2022.2110518
  • Ye, Y. Y., Ding, Y. F., Jiang, Q., Wang, F. J., Sun, J. W., & Zhu, C. (2017). The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Reports, 36(2), 235242. https://doi.org/10.1007/s00299-016-2084-x
  • Yuan, L., & Xu, X. D. (2022). Biological clock and abiotic stress signal response in plants. Chinese Journal of Plant Ecology, 58(1), 13–20.
  • Zhang, W. P., Zhao, G. Y., Gao, L. F., Kong, X., Guo, Z. A., Wu, B. H., & Jia, J. (2016). Functional studies of Heading date-related gene TaPRR73, a paralog of Ppd1 in common wheat. Frontiers in Plant Science, 7, 772. https://doi.org/10.3389/fpls.2016.00772
  • Zhao, D. B., Gao, F. J., Guan, P. Y., Gao, J. S., Guo, Z. H., Guo, J. J., Cui, H. N., Li, Y. J., Zhang, G. J., Li, Z., & Guo, L. H. (2023). Identification and analysis of differentially expressed trihelix genes in maize (Zea mays) under abiotic stresses. PeerJ, 11, e15312. https://doi.org/10.7717/peerj.15312

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.