763
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Investigating the rheological properties and compatibility behaviours of RET/PE and WR/CR/SBS compound-modified bitumen

, , ORCID Icon, , ORCID Icon &
Pages 653-677 | Received 05 Mar 2022, Accepted 30 May 2023, Published online: 06 Jun 2023

References

  • Ali, B., Soudani, K., & Haddadi, S. (2022). Effect of waste plastic and crumb rubber on the thermal oxidative aging of modified bitumen. Road Materials and Pavement Design, 23(1), 222–233. https://doi.org/10.1080/14680629.2020.1820893
  • Behnood, A., & Gharehveran, M. M. (2019). Morphology: Rheology, and physical properties of polymer-modified asphalt binders. European Polymer Journal, 112, 766–791. https://doi.org/10.1016/j.eurpolymj.2018.10.049
  • Camargo, I., Dhia, T., Loulizi, A., Hofko, B., & Mirwald, J. (2021). Anti-aging additives: Proposed evaluation process based on literature review. Road Materials and Pavement Design, 22(1), S134–S153. https://doi.org/10.1080/14680629.2021.1906738
  • Cuadri, A. A., Roman, C., Garcia-Morales, M., Guisado, F., Moreno, E., & Partal, P. (2016). Formulation and processing of recycled-low-density-polyethylene-modified bitumen emulsions for reduced-temperature asphalt technologies. Chemical Engineering Science, 156, 197–205. https://doi.org/10.1016/j.ces.2016.09.018
  • Das, P. K., Tasdemir, Y., & Birgisson, B. (2012). Evaluation of fracture and moisture damage performance of wax modified asphalt mixtures. Road Materials and Pavement Design, 13(1), 142–155. https://doi.org/10.1080/14680629.2011.644120
  • Domingos, M., Faxina, A., & Bernucci, L. (2021). Modelling and permanent deformation analysis of low-density polyethylene (PE)-modified bitumens and asphalts. Road Materials and Pavement Design, 22(8), 1860–1880. https://doi.org/10.1080/14680629.2020.1732446
  • Duarte, G. M., & Faxina, A. L. (2021). Asphalt concrete mixtures modified with polymeric waste by the wet and dry processes: A literature review. Construction and Building Materials, 312, 125408.
  • Formela, K., Sulkowski, M., Saeb, M. R., Colom, X., & Haponiuk, J. T. (2016). Assessment of microstructure,: physical and thermal properties of bitumen modified with LDPE/GTR/elastomer ternary blends. Construction and Building Materials, 106, 160–167. https://doi.org/10.1016/j.conbuildmat.2015.12.108
  • Gama, D. A., Yan, Y., Rodrigues, J. K. G., & Roque, R. (2018). Optimizing the use of reactive terpolymer, polyphosphoric acid and high-density polyethylene to achieve asphalt binders with superior performance. Construction and Building Materials, 169, 522–529. https://doi.org/10.1016/j.conbuildmat.2018.02.206
  • Ge, D., Yan, K., You, Z., & Xu, H. (2016). Modification mechanism of asphalt binder with waste tire rubber and recycled polyethylene. Construction and Building Materials, 126, 66–76. https://doi.org/10.1016/j.conbuildmat.2016.09.014
  • Geckil, T., & Seloglu, M. (2018). Performance properties of asphalt modified with reactive terpolymer. Construction and Building Materials, 173, 262–271. https://doi.org/10.1016/j.conbuildmat.2018.04.036
  • Hajikarimi, P., Hosseini, A. S., & Fini, E. H. (2022). Evaluation of the compatibility of waste plastics and bitumen using micromechanical modeling. Construction and Building Materials, 317, 126107.
  • Hesp, S. A. M., Hoare, T. R., & Roy, S. D. (2002). Low-temperature fracture in reactive-ethylene-terpolymer-modified asphalt binders. International Journal of Pavement Engineering, 3(3), 153–159. https://doi.org/10.1080/1029843021000067809
  • Huysman, S., Schaepmeester, J. D., Ragaert, K., Dewulf, J., & Meester, S. D. (2017). Performance indicators for a circular economy: A case study on post-industrial plastic waste. Resources, Conversation and Recycling, 120, 46–54.
  • Irfan, M., Saeed, M., Ahmed, S., & Ali, Y. (2017). Performance evaluation of Elvaloy as a fuel-resistant polymer in asphaltic concrete airfield pavements. Journal of Materials in Civil Engineering, 29(10), 04017163. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002018
  • Jiao, Y., Zhang, Y., Fu, L., Guo, M., & Zhang, L. (2019). Influence of crumb rubber and tafpack super on performances of SBS modified porous asphalt mixtures. Road Materials and Pavement Design, 20(1), S196–S216. https://doi.org/10.1080/14680629.2019.1590223
  • Joohari, I. B., Maniam, S., & Giustozzi, F. (2022). Enhancing the storage stability of SBS-plastic waste modified bitumen using reactive elastomeric terpolymer. International Journal of Pavement Research and Technology, https://doi.org/10.1007/s42947-021-00132-z
  • Kakar, M. R., Mikhailenko, P., Piao, Z., Bueno, M., & Poulikakos, L. (2021). Analysis of waste polyethylene (PE) and its by-products in asphalt binder. Construction and Building Materials, 280, 122492. https://doi.org/10.1016/j.conbuildmat.2021.122492
  • Kang, Y., Zhou, D., Wu, Q., Liang, R., Shangguan, S., Liao, Z., & Wei, N. (2019). Molecular dynamics study on the glass forming process of asphalt. Construction and Building Materials, 214, 430–440. https://doi.org/10.1016/j.conbuildmat.2019.04.138
  • Keyf, S. (2018). The modification of bitumen with styrene-butadiene-styrene,: ethylene vinyl acetate and varying the amount of reactive ethylene terpolymer. Journal of Elastomers & Plastics, 50(3), 241–255. https://doi.org/10.1177/0095244317708590
  • Kim, J., Jang, H., & Kim, N. (2022). Evaluation of potential applicability of modified solvent deasphalted residue as an asphalt crack sealant. Road Materials and Pavement Design, 23(3), 725–734. https://doi.org/10.1080/14680629.2020.1845784
  • Kumar, A., Choudhary, R., & Kumar, A. (2021). Characterisation of asphalt binder modified with ethylene-propylene-diene-monomer (EPDM) rubber waste from automobile industry. Road Materials and Pavement Design, 22(9), 2044–2068. https://doi.org/10.1080/14680629.2020.1740772
  • Li, L., Zheng, Y., Xu, B., Xu, Y., & Liu, Z. (2021). Wax separated effectively from fischer-tropsch wax residue by solvent desorption: Thermodynamic and kinetic analysis. Applied Sciences, 11(16), 7745. https://doi.org/10.3390/app11167745
  • Li, X., Li, J., Wang, J., Yuan, J., Jiang, F., Yu, X., & Xiao, F. (2021). Recent applications and developments of polyurethane materials in pavement engineering. Construction and Building Materials, 304, 124639.
  • Liang, M., Ren, S., Sun, C., Zhang, J., Jiang, H., & Yao, Z. (2020). Extruded tire crumb-rubber recycled polyethylene melt blend as asphalt composite additive for enhancing the performance of binder. Journal of Materials in Civil Engineering, 32(3), 04019373. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003044
  • Liang, M., Sun, C., Yao, Z., Jiang, H., Zhang, J., & Ren, S. (2020). Utilization of wax residue as compatibilizer for asphalt with ground tire rubber/recycled polyethylene blends. Construction and Building Materials, 230, 116966.
  • Liang, M., Xin, X., Fan, W., Zhang, J., Jiang, H., & Yao, Z. (2021). Comparison of rheological properties and compatibility of asphalt modified with various polyethylene. International Journal of Pavement Engineering, 22(1), 11–20. https://doi.org/10.1080/10298436.2019.1575968
  • Ma, Y., Wang, S., Zhou, H., Hu, W., Polaczyk, P., & Huang, B. (2022). Recycled polyethylene and crumb rubber composites modified asphalt with improved aging resistance and thermal stability. Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2021.130102
  • Mazumder, M., Kim, H., & Lee, S. (2016). Performance properties of polymer modified asphalt binders containing wax additives. International Journal of Pavement Research and Technology, 9(2), 128–139. https://doi.org/10.1016/j.ijprt.2016.03.004
  • Merusi, F., & Giuliani, F. (2011). Rheological characterization of wax-modified asphalt binders at high service temperatures. Materials and Structures, 44(10), 1809–1820. https://doi.org/10.1617/s11527-011-9739-4
  • Navarro, F. J., Partal, P., Martinez-Boza, F. J., & Gallegos, C. (2010). Novel recycled polyethylene/ground tire rubber/bitumen blends for use in roofing applications: Thermo-mechanical properties. Polymer Testing, 29(5), 588–595. https://doi.org/10.1016/j.polymertesting.2010.03.010
  • Okhotnikova, E. S., Ganeeva, Y. M., Frolov, I. N., Yusupova, T. N., & Fazylzyanova, G. R. (2022). Structural characterization and application of bitumen modified by recycled polyethylenes. Construction and Building Materials, 316, 126118.
  • Ouyang, C., Gao, Q., Shi, Y., & Shan, X. (2012). Compatibilizer in waste tire powder and low-density polyethylene blends and the blends modified asphalt. Journal of Applied Polymer Science, 123(1), 485–492. https://doi.org/10.1002/app.34634
  • Padhan, R., Gupta, A., & Sreeram, A. (2019). Effect of cross-linking agent on ethylene vinyl acetate/polyoctenamer modified bitumen. Road Materials and Pavement Design, 20(7), 1615–1623. https://doi.org/10.1080/14680629.2018.1467335
  • Padhan, R., Sreeram, A., & Gupta, A. (2020). Evaluation of trans-polyoctenamer and cross-linking agents on the performance of waste polystyrene modified asphalt. Road Materials and Pavement Design, 21(4), 1170–1182. https://doi.org/10.1080/14680629.2018.1533490
  • Pang, J., Du, S., Chang, R., & Pei, Q. (2016). The properties of SBS-modified asphalt binder in the presence of dithiodimorpholine and tetraethyl thiuram disulphide. Road Materials and Pavement Design, 17(2), 466–476. https://doi.org/10.1080/14680629.2015.1082928
  • Prosperi, E., Bocci, E., & Bocci, M. (2022). Evaluation of the rejuvenating effect of different additives on bituminous mixtures including hot-recycled RA as a function of the production temperature. Road Materials and Pavement Design, 23(12), 2798–2817. https://doi.org/10.1080/14680629.2021.2002179
  • Rath, P., Gettu, N., Chen, S., & Buttlar, W. G. (2022). Investigation of cracking mechanisms in rubber-modified asphalt through fracture testing of mastic specimens. Road Materials and Pavement Design, 23(7), 1544–1563. https://doi.org/10.1080/14680629.2021.1905696
  • Ren, S., Liu, X., Fan, W., Qian, C., Nan, G., & Erkens, S. (2021). Investigating the effects of waste oil and styrene-butadiene rubber on restoring and improving the viscoelastic,: compatibility, and aging properties of aged asphalt. Construction and Building Materials, 269, 121338 .
  • Ren, S., Liu, X., Li, M., Fan, W., Xu, J., & Erkens, S. (2020). Experimental characterization of viscoelastic behaviors,: microstructure and thermal stability of CR/SBS modified asphalt with TOR. Construction and Building Materials, 261, 120524.
  • Ren, S., Liu, X., Wang, H., Fan, W., & Erkens, S. (2020). Evaluation of rheological behaviors and anti-aging properties of recycled asphalts using low-viscosity asphalt and polymers. Journal of Cleaner Production, 253, 120048.
  • Shahane, H., & Bhosale, S. (2021). E-Waste plastic powder modified bitumen: Rheological properties and performance study of bituminous concrete. Road Materials and Pavement Design, 22(3), 682–702. https://doi.org/10.1080/14680629.2019.1642944
  • Soenen, H., Carbonneau, X., Lu, X., Robertus, C., & Tapin, B. (2022). Rheological and chemical properties of field aged binders and their variation within the wearing course. Road Materials and Pavement Design, 23(1), 36–54. https://doi.org/10.1080/14680629.2021.1994450
  • Tauste-Martinez, R., Moreno-Navarro, F., Sol-Sanchez, M., & Rubio-Gamez, M. (2021). Multiscale evaluation of the effect of recycled polymers on the long-term performance of bituminous materials. Road Materials and Pavement Design, 22(1), S99–S116. https://doi.org/10.1080/14680629.2021.1906737
  • Tusar, M., Kakar, M. R., Poulikakos, L. D., Pasquini, E., Baliello, A., Pasetto, M., Porot, L., Wang, D., Falchetto, A. C., Dalmazzo, D., Presti, D. L., Giancontieri, G., Varveri, A., Veropalumbo, R., Viscione, N., Vasconcelos, K., & Carter, A. (2022). RILEM TC 279 WMR round robin study on waste polyethylene modified bituminous binders: Advantages and challenges. Road Materials and Pavement Design, DOI: 10.1080/14680629.2021.2017330
  • Wang, S., Wang, Q., Wu, X., & Zhang, Y. (2015). Asphalt modified by thermoplastic elastomer based on recycled rubber. Construction and Building Materials, 93, 678–684. https://doi.org/10.1016/j.conbuildmat.2015.06.047
  • Wu, S., & Montalvo, L. (2021). Repurposing waste plastics into cleaner asphalt pavement materials: A critical literature review. Journal of Cleaner Production, 280(2), 124355. https://doi.org/10.1016/j.jclepro.2020.124355
  • Xiao, F., Zong, Q., Wang, J., Chen, J., & Liu, J. (2022). Storage stability characterization and improvement of SBS and crumb rubber composite modified asphalt. Road Materials and Pavement Design, 23(3), 509–526. https://doi.org/10.1080/14680629.2020.1830151
  • Yan, K., Hong, Z., You, L., Ou, J., & Miljkovic, M. (2021). Influence of ethylene-vinyl acetate on the performance improvements of low-density polyethylene-modified bitumen. Journal of Cleaner Production, 278, 123865.
  • Yang, X., You, Z., Perram, D., Hand, D., Ahmed, Z., Wei, W., & Luo, S. (2019). Emission analysis of recycled tire rubber modified asphalt in hot and warm mix conditions. Journal of Hazardous Materials, 365, 942–951. https://doi.org/10.1016/j.jhazmat.2018.11.080
  • Yao, L., Leng, Z., Lan, J., Chen, R., & Jiang, J. (2022). Environmental and economic assessment of collective recycling waste plastic and reclaimed asphalt pavement into pavement construction: A case study in Hong Kong. Journal of Cleaner Production, 336, 130405.
  • Yao, Z., Zhang, J., Gao, F., Liu, S., & Yu, T. (2018). Integrated utilization of recycled crumb rubber and polyethylene for enhancing the performance of modified bitumen. Construction and Building Materials, 170, 217–224. https://doi.org/10.1016/j.conbuildmat.2018.03.080
  • Yu, L., Lyu, L., Li, R., Du, Y., & Pei, J. (2022). Microscopic mechanism of direct-input waste plastic modified asphalt. J. Transp. Eng. Part B: Pavements, 148(2), 04022003.
  • Yue, M., Yue, J., Wang, R., & Xiong, Y. (2021). Evaluating the fatigue characteristics and healing potential of asphalt binder modified with Sasobit and polymers using linear amplitude sweep test. Construction and Building Materials, 289, 123054.
  • Zhang, J., Yao, Z., Yu, T., Liu, S., & Jiang, H. (2019). Experimental evaluation of crumb rubber and polyethylene integrated modified asphalt mixture upon related properties. Road Materials and Pavement Design, 20(6), 1413–1428. https://doi.org/10.1080/14680629.2018.1447505
  • Zhang, S., Cui, Y., & Wei, W. (2021). Low-temperature characteristics and microstructure of asphalt under complex aging conditions. Construction and Building Materials, 303, 124408.