169
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Machine learning-based prediction of resilient modulus for blends of tire-derived aggregates and demolition wastes

ORCID Icon, ORCID Icon, , , &
Pages 694-715 | Received 23 Nov 2021, Accepted 01 Jun 2023, Published online: 22 Jun 2023

References

  • Akinade, O. O., & Oyedele, L. O. (2019). Integrating construction supply chains within a circular economy: An ANFIS-based waste analytics system (A-WAS). Journal of Cleaner Production, 229, 863–873. https://doi.org/10.1016/j.jclepro.2019.04.232
  • Alavi, A. H., & Gandomi, A. H. (2011). Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Computers & Structures, 89(23-24), 2176–2194. https://doi.org/10.1016/j.compstruc.2011.08.019
  • Arisha, A. M., Gabr, A., El-Badawy, S., & Shwally, S. (2018). Performance evaluation of construction and demolition waste materials for pavement construction in Egypt. Journal of Materials in Civil Engineering, 30(2), 04017270. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002127
  • Arulrajah, A., Mohammadinia, A., Maghool, F., & Horpibulsuk, S. (2019a). Tire derived aggregates as a supplementary material with recycled demolition concrete for pavement applications. Journal of Cleaner Production.
  • Arulrajah, A., Mohammadinia, A., Maghool, F., & Horpibulsuk, S. (2019b). Tyre derived aggregates and waste rock blends: Resilient moduli characteristics. Construction and Building Materials, 201, 207–217. https://doi.org/10.1016/j.conbuildmat.2018.12.189
  • Arulrajah, A., Piratheepan, J., Disfani, M. M., & Bo, M. W. (2012). Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. Journal of Materials in Civil Engineering, 25(8), 1077–1088. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000652
  • AustRoads. (2000). Determination of permanent deformation and resilient modulus characteristics of unbound granular materials under drained conditions. AustRoads.
  • Azam, A., Cameron, D., & Rahman, M. (2013). Model for prediction of resilient modulus incorporating matric suction for recycled unbound granular materials. Can Geotech J, 50(11), 1143–1158. https://doi.org/10.1139/cgj-2012-0406
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Daneshvar, D., & Behnood, A. (2020). Estimation of the dynamic modulus of asphalt concretes using random forests algorithm. International Journal of Pavement Engineering, 23(2), 250–260..
  • Farrar, D. E., & Glauber, R. R. (1967). Multicollinearity in regression analysis: The problem revisited. The Review of Economic and Statistics, 49(1), 92–107. https://doi.org/10.2307/1937887
  • Freire, A., Neves, J., Roque, A., Milagre Martins, I., Antunes, M., & Faria, G. (2013). Use of construction and demolition recycled materials (C&DRM) in road pavements validated on experimental test sections. Proceedings of WASTES 2013: Solutions, Treatments and Opportunities, Leeds, pp. 91–96.
  • Gabr, A., & Cameron, D. (2012). Properties of recycled concrete aggregate for unbound pavement construction. Journal of Materials in Civil Engineering, 24(6), 754–764. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000447
  • Ghorbani, B., Arulrajah, A., Narsilio, G., & Bo, M. (2021a). Thermal and mechanical properties of demolition wastes in geothermal pavements by experimental and machine learning techniques. Construction and Building Materials, 280, Article 122499. https://doi.org/10.1016/j.conbuildmat.2021.122499
  • Ghorbani, B., Arulrajah, A., Narsilio, G., & Horpibulsuk, S. (2020a). Experimental investigation and modelling the deformation properties of demolition wastes subjected to freeze–thaw cycles using ANN and SVR. Construction and Building Materials, 258, Article 119688. https://doi.org/10.1016/j.conbuildmat.2020.119688
  • Ghorbani, B., Arulrajah, A., Narsilio, G., Horpibulsuk, S., & Bo, M. (2020b). Development of genetic-based models for predicting the resilient modulus of cohesive pavement subgrade soils. Soils and Foundations, 60(2), 398–412. https://doi.org/10.1016/j.sandf.2020.02.010
  • Ghorbani, B., Arulrajah, A., Narsilio, G., Horpibulsuk, S., & Leong, M. (2021b). Resilient moduli of demolition wastes in geothermal pavements: Experimental testing and ANFIS modelling. Transportation Geotechnics, 29, 100592.
  • Ghorbani, B., Yaghoubi, E., & Arulrajah, A. (2021c). Thermal and mechanical characteristics of recycled concrete aggregates mixed with plastic wastes: experimental investigation and mathematical modeling. Acta Geotechnica, 1–16.
  • Gu, F., Luo, X., Zhang, Y., Chen, Y., Luo, R., & Lytton, R. L. (2018). Prediction of geogrid-reinforced flexible pavement performance using artificial neural network approach. Road Materials and Pavement Design, 19(5), 1147–1163. https://doi.org/10.1080/14680629.2017.1302357
  • Hick, R., & Monismith, C. (1971). Factors influencing the resilient response of granular materials. Highway Research Record, 345, 15–31.
  • Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: A global review of solid waste management.
  • Huang, Y. H. (1993). Pavement analysis and design.
  • Ikeagwuani, C. C., Nwonu, D. C., & Nweke, C. C. (2021). Resilient modulus descriptive analysis and estimation for fine-grained soils using multivariate and machine learning methods. International Journal of Pavement Engineering, 23(10), 3409–3424. https://doi.org/10.1080/10298436.2021.1895993
  • Jahed Armaghani, D., Asteris, P. G., Askarian, B., Hasanipanah, M., Tarinejad, R., & Huynh, V. V. (2020). Examining hybrid and single SVM models with different kernels to predict rock brittleness. Sustainability, 12(6), 2229. https://doi.org/10.3390/su12062229
  • Khandelwal, H., Dhar, H., Thalla, A. K., & Kumar, S. (2019). Application of life cycle assessment in municipal solid waste management: A worldwide critical review. Journal of Cleaner Production, 209, 630–654. https://doi.org/10.1016/j.jclepro.2018.10.233
  • Khasawneh, M. A., & Al-Jamal, N. F. (2019). Modeling resilient modulus of fine-grained materials using different statistical techniques. Transportation Geotechnics, 21, 100263. https://doi.org/10.1016/j.trgeo.2019.100263
  • Kim, S.-H., Yang, J., & Jeong, J.-H. (2014). Prediction of subgrade resilient modulus using artificial neural network. KSCE Journal of Civil Engineering, 18(5), 1372–1379. https://doi.org/10.1007/s12205-014-0316-6
  • Lekarp, F. (1999). Resilient and permanent deformation behavior of unbound aggregates under repeated loading. Institutionen för infrastruktur och samhällsplanering.
  • Li, J., Zhang, J., Ni, S., Liu, L., & Walubita, L. F. (2021). Mechanical performance and environmental impacts of self-compacting concrete with recycled demolished concrete blocks. Journal of Cleaner Production, 293, 126129. https://doi.org/10.1016/j.jclepro.2021.126129
  • Mabrouk, G. M., Elbagalati, O. S., Dessouky, S., Fuentes, L., & Walubita, L. F. (2022). Using ANN modeling for pavement layer moduli backcalculation as a function of traffic speed deflections. Construction and Building Materials, 315, 125736. https://doi.org/10.1016/j.conbuildmat.2021.125736
  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/BF02478259
  • Mohammad, L. N., Titi, H. H., & Herath, A. (2002). Effect of moisture content and dry unit weight on the resilient modulus of subgrade soils predicted by cone penetration test. Louisiana Transportation Research Center.
  • Ossa, A., García, J., & Botero, E. (2016). Use of recycled construction and demolition waste (CDW) aggregates: A sustainable alternative for the pavement construction industry. Journal of Cleaner Production, 135, 379–386. https://doi.org/10.1016/j.jclepro.2016.06.088
  • Özbay, Y., & Tezel, G. (2010). A new method for classification of ECG arrhythmias using neural etwork with adaptive activation function. Digital Signal Processing, 20(4), 1040–1049. https://doi.org/10.1016/j.dsp.2009.10.016
  • Puppala, A. J., Hoyos, L. R., & Potturi, A. K. (2011). Resilient moduli response of moderately cement-treated reclaimed asphalt pavement aggregates. Journal of Materials in Civil Engineering, 23(7), 990–998. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000268
  • Raeesi, R., Soltani, A., King, R., & Disfani, M. M. (2020). Field performance monitoring of waste tire-based permeable pavements. Transportation Geotechnics, 24, Article 100384. https://doi.org/10.1016/j.trgeo.2020.100384
  • Rahim, A. (2005). Subgrade soil index properties to estimate resilient modulus for pavement design. International Journal of Pavement Engineering, 6(3), 163–169. https://doi.org/10.1080/10298430500140891
  • Raja, M. N. A., Shukla, S. K., & Khan, M. U. A. (2021). An intelligent approach for predicting the strength of geosynthetic-reinforced subgrade soil. International Journal of Pavement Engineering, 23(10), 3505–3521.
  • Saberian, M., Li, J., Boroujeni, M., Law, D., & Li, C.-Q. (2020). Application of demolition wastes mixed with crushed glass and crumb rubber in pavement base/subbase, resources. Conservation and Recycling, 156, 104722. https://doi.org/10.1016/j.resconrec.2020.104722
  • Samui, P. (2008). Support vector machine applied to settlement of shallow foundations on cohesionless soils. Computers and Geotechnics, 35(3), 419–427. https://doi.org/10.1016/j.compgeo.2007.06.014
  • Sanchez-Cotte, E. H., Fuentes, L., Martinez-Arguelles, G., Quintana, H. A. R., Walubita, L. F., & Cantero-Durango, J. M. (2020). Influence of recycled concrete aggregates from different sources in hot mix asphalt design. Construction and Building Materials, 259, Article 120427. https://doi.org/10.1016/j.conbuildmat.2020.120427
  • Smith, G. N. (1986). Probability and statistics in civil engineering. In Collins professional and technical books, 244.
  • Soltani, A., Deng, A., Taheri, A., & C, B. (2019). O’Kelly, Engineering reactive clay systems by ground rubber replacement and polyacrylamide treatment. Polymers, 11(10), 1675. https://doi.org/10.3390/polym11101675
  • Souliman, M. I., GC, H., Isied, M. M., & Walubita, L. F. (2020). Treated versus untreated aggregate bases for flexible pavements: Nationwide comparative case study. Transportation Research Record, 2674(2), 225–236. https://doi.org/10.1177/0361198120906419
  • Tenpe, A. R., & Patel, A. (2020). Application of genetic expression programming and artificial neural network for prediction of CBR. Road Materials and Pavement Design, 21(5), 1183–1200. https://doi.org/10.1080/14680629.2018.1544924
  • van Staden, R., & Fragomeni, S. (2017). Finite element analysis of fire-damaged flexible pavement deterioration. Journal of Structural Fire Engineering.
  • Vapnik, V. (1995). The nature of statistical learning theory. Springer New York Google Scholar.
  • Vapnik, V., Golowich, S. E., & Smola, A. J. (1997). Support vector method for function approximation, regression estimation and signal processing. Advances in Neural Information Processing Systems, pp. 281–287.
  • Walubita, L. F., Mercado, V., Lee, S. I., Fuentes, L., & Villegas, J. M. (2021). Exploration of a mechanistic model for the quantification of the resilient modulus using free-free resonant column testing. Road Materials and Pavement Design, 22(10), 2369–2383. https://doi.org/10.1080/14680629.2020.1756901
  • Wang, D., Tawk, M., Indraratna, B., Heitor, A., & Rujikiatkamjorn, C. (2019). A mixture of coal wash and fly ash as a pavement substructure material. Transportation Geotechnics, 21, 100265. https://doi.org/10.1016/j.trgeo.2019.100265
  • Xu, X., Leng, Z., Lan, J., Wang, W., Yu, J., Bai, Y., Sreeram, A., & Hu, J. (2021). Sustainable practice in pavement engineering through value-added collective recycling of waste plastic and waste tyre rubber. Engineering, 7(6), 857–867. https://doi.org/10.1016/j.eng.2020.08.020
  • Yaghoubi, E., Arulrajah, A., Wong, Y. C., & Horpibulsuk, S. (2017). Stiffness properties of recycled concrete aggregate with polyethylene plastic granules in unbound pavement applications. Journal of Materials in Civil Engineering, 29(4), 04016271. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001821
  • Yaghoubi, E., Disfani, M. M., Arulrajah, A., & Kodikara, J. (2018). Impact of compaction method on mechanical characteristics of unbound granular recycled materials. Road Materials and Pavement Design, 19(4), 912–934. https://doi.org/10.1080/14680629.2017.1283354
  • Yaghoubi, E., Sudarsanan, N., & Arulrajah, A. (2021). Stress-strain response analysis of demolition wastes as aggregate base course of pavements. Transportation Geotechnics, 30, Article 100599. https://doi.org/10.1016/j.trgeo.2021.100599
  • Zaman, M., Solanki, P., Ebrahimi, A., & White, L. (2010). Neural network modeling of resilient modulus using routine subgrade soil properties. International Journal of Geomechanics, 10(1), 1–12. https://doi.org/10.1061/(ASCE)1532-3641(2010)10:1(1)
  • Zhang, J., Gu, F., & Zhang, Y. (2019). Use of building-related construction and demolition wastes in highway embankment: laboratory and field evaluations. Journal of Cleaner Production, 230, 1051–1060. https://doi.org/10.1016/j.jclepro.2019.05.182
  • Zhang, W., & Goh, A. T. C. (2013). Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Computers and Geotechnics, 48, 82–95. https://doi.org/10.1016/j.compgeo.2012.09.016
  • Zhou, C., Yin, K., Cao, Y., & Ahmed, B. (2016). Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China. Engineering Geology, 204, 108–120. https://doi.org/10.1016/j.enggeo.2016.02.009
  • Zou, W.-L., Han, Z., Ding, L.-Q., & Wang, X.-Q. (2021). Predicting resilient modulus of compacted subgrade soils under influences of freeze–thaw cycles and moisture using gene expression programming and artificial neural network approaches. Transportation Geotechnics, 28, Article 100520. https://doi.org/10.1016/j.trgeo.2021.100520

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.