219
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Cracking performance evaluation and modelling of RAP mixtures containing different recycled materials using deep neural network model

, &
Pages 716-735 | Received 02 Oct 2022, Accepted 03 Jun 2023, Published online: 14 Jun 2023

References

  • Abba, S. I., Pham, Q. B., Usman, A. G., Linh, N. T. T., Aliyu, D. S., Nguyen, Q., & Bach, Q. V. (2020). Emerging evolutionary algorithm integrated with kernel principal component analysis for modeling the performance of a water treatment plant. Journal of Water Process Engineering, 33, 101081. https://doi.org/10.1016/j.jwpe.2019.101081
  • Abdollahi, S. F., Karimi, M. M., Jahanbakhsh, H., & Tabatabaee, N. (2022). Cracking performance of rubberized RAP mixtures with Sasobit. Construction and Building Materials, 319, 126090. https://doi.org/10.1016/j.conbuildmat.2021.126090
  • Al-Qadi, I. L., Ozer, H., Lambros, J., El Khatib, A., Singhvi, P., Khan, T., Rivera-Perez, J., & Doll, B. (2015). Testing protocols to ensure performance of high asphalt binder replacement mixes using RAP and RAS. Illinois Center for Transportation/Illinois Department of Transportation.
  • Al-Qadi, I. L., Wu, S., Lippert, D. L., Ozer, H., Barry, M. K., & Safi, F. R. (2017). Impact of high recycled mixed on HMA overlay crack development rate. Road Materials and Pavement Design, 18(sup4), 311–327. https://doi.org/10.1080/14680629.2017.1389076
  • Aurangzeb, Q., Al-Qadi, I. L., Ozer, H., & Yang, R. (2014). Hybrid life cycle assessment for asphalt mixtures with high RAP content. Resources, Conservation and Recycling, 83, 77–86. http://doi.org/10.1016/j.resconrec.2013.12.004
  • Barghabany, P., Zhang, J., Mohammad, L. N., Cooper III, S. B., & Cooper, Jr., S. B. (2022). Novel model to predict critical strain energy release rate in semi-circular bend test as fracture parameter for Asphalt mixtures using an Artificial Neural Network Approach. Transportation Research Record, 2676(1), 388–400. https://doi.org/10.1177/03611981211036357
  • Daryaee, D., Ameri, M., & Mansourkhaki, A. (2020). Utilizing of waste polymer modified bitumen in combination with rejuvenator in high reclaimed asphalt pavement mixtures. Construction and Building Materials, 235, 117516. https://doi.org/10.1016/j.conbuildmat.2019.117516
  • Devulapalli, L., Kothandaraman, S., & Sarang, G. (2020). Effect of rejuvenating agents on stone matrix asphalt mixtures incorporating RAP. Construction and Building Materials, 254, 119298. https://doi.org/10.1016/j.conbuildmat.2020.119298
  • Diefenderfer, S. D., Boz, I., & Habbouche, J. (2021). Balanced mix design for surface Asphalt mixtures: Phase I: Initial roadmap development and specification verification (No. FHWA/VTRC 21-R15). Virginia Transportation Research Council (VTRC).
  • Doll, B., Ozer, H., Rivera-Perez, J. J., Al-Qadi, I. L., & Lambros, J. (2017). Investigation of viscoelastic fracture fields in asphalt mixtures using digital image correlation. International Journal of Fracture, 205(1), 37–56. https://doi.org/10.1007/s10704-017-0180-8
  • El-Badawy, S., Abd El-Hakim, R., & Awed, A. (2018). Comparing artificial neural networks with regression models for hot-mix asphalt dynamic modulus prediction. Journal of Materials in Civil Engineering, 30(7), 04018128. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002282
  • FHWA. (2011). Reclaimed asphalt pavement in asphalt mixtures: State of the practice. Report No. FHWA-HRT-11-021, FHWA, McLean, Virginia.
  • Ghasemi, P., Aslani, M., Rollins, D. K., & Williams, R. C. (2019). Principal component neural networks for modeling,: prediction, and optimization of hot mix asphalt dynamics modulus. Infrastructures, 4(3), 53. https://doi.org/10.3390/infrastructures4030053
  • Jahanbakhsh, H., Karimi, M. M., Naseri, H., & Nejad, F. M. (2020). Sustainable asphalt concrete containing high reclaimed asphalt pavements and recycling agents: Performance assessment, cost analysis, and environmental impact. Journal of Cleaner Production, 244, 118837. https://doi.org/10.1016/j.jclepro.2019.118837
  • Jia, X., Huang, B., Moore, J. A., & Zhao, S. (2015). Influence of waste engine oil on asphalt mixtures containing reclaimed asphalt pavement. Journal of Materials in Civil Engineering, 27(12), 04015042. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001292
  • Kavussi, A., Jalili Qazizadeh, M., & Hassani, A. (2015). Fatigue behavior analysis of asphalt mixes containing electric arc furnace (EAF) steel slag. Journal of Rehabilitation in Civil Engineering, 3(1), 74–86. https://doi.org/10.22075/JRCE.2016.364
  • Khalili, M., Jadidi, K., Karakouzian, M., & Amirkhanian, S. (2019). Rheological properties of modified crumb rubber asphalt binder and selecting the best modified binder using AHP method. Case Studies in Construction Materials, 11, e00276. http://doi.org/10.1016/j.cscm.2019.e00276
  • Khan, M. Z. H., Koting, S., Katman, H. Y. B., Ibrahim, M. R., Babalghaith, A. M., & Asqool, O. (2021). Performance of high content reclaimed asphalt pavement (RAP) in asphaltic mix with crumb rubber modifier and waste engine oil as rejuvenator. Applied Sciences, 11(11), 5226. https://doi.org/10.3390/app11115226
  • Khorshidi, M., Ameri, M., Goli, A., Orešković, M., & Khayambashi, K. (2023). Performance evaluation of asphalt mixtures containing different proportions of alternative materials (Under Review).
  • Kingma, D., & Ba, J. (2015). A method for stochastic optimization. Proceedings of the 3rd International Conference on Learning Representations (ICLR). May 7–9.
  • Kocak, S., & Kutay, M. E. (2017). Use of crumb rubber in lieu of binder grade bumping for mixtures with high percentage of reclaimed asphalt pavement. Road Materials and Pavement Design, 18(1), 116–129. https://doi.org/10.1080/14680629.2016.1142466
  • Leiva-Villacorta, F., & Julian, G. (2020). Laboratory and Field Characterization of Warm Asphalt Mixtures with High Reclaimed Asphalt Pavement Contents in Alabama NCAT Report 20-01.
  • Lin, P., Huang, W., Tang, N., & Xiao, F. (2017). Performance characteristics of terminal blend rubberized asphalt with SBS and polyphosphoric acid. Construction and Building Materials, 141, 171–182. https://doi.org/10.1016/j.conbuildmat.2017.02.138
  • Liu, J., Yan, K., Liu, J., & Zhao, X. (2018a). Using artificial neural networks to predict the dynamic modulus of asphalt mixtures containing recycled asphalt shingles. Journal of Materials in Civil Engineering, 30(4), 1–7. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002242
  • Liu, S., Peng, A., Wu, J., & Zhou, S. B. (2018b). Waste engine oil influences on chemical and rheological properties of different asphalt binders. Construction and Building Materials, 191, 1210–1220. http://doi.org/10.1016/j.conbuildmat.2018.10.126
  • Majidifard, H., Jahangiri, B., Rath, P., Alavi, A. H., & Buttlar, W. G. (2021). A deep learning approach to predict Hamburg rutting curve. Road Materials and Pavement Design, 22(9), 2159–2180. http://doi.org/10.1080/14680629.2021.1886160
  • Majidifard, H., Tabatabaee, N., & Buttlar, W. (2019). Investigating short-term and long-term binder performance of high-RAP mixtures containing waste cooking oil. Journal of Traffic and Transportation Engineering (English Edition), 6(4), 396–406. http://doi.org/10.1016/j.jtte.2018.11.002
  • Meroni, F., Flintsch, G. W., Habbouche, J., Diefenderfer, B. K., & Giustozzi, F. (2021). Three-level performance evaluation of high RAP asphalt surface mixes. Construction and Building Materials, 309, 125164. https://doi.org/10.1016/j.conbuildmat.2021.125164
  • Mirzababaei, P. (2016). Effect of zycotherm on moisture susceptibility of warm mix Asphalt mixtures prepared with different aggregate types and gradations. Construction and Building Materials, 116, 403–412. https://doi.org/10.1016/j.conbuildmat.2016.04.143
  • Mirzaiyanrajeh, D., Dave, E. V., Sias, J. E., & Ramsey, P. (2022). Developing a prediction model for low-temperature fracture energy of asphalt mixtures using machine learning approach. International Journal of Pavement Engineering, 1–12. https://doi.org/10.1080/10298436.2021.2024185
  • Mohajeri, M. (2015). Hot Mix Asphalt Recycling: Practices and Principles.
  • Mohamed, A. S., Cao, Z., Xu, X., Xiao, F., & Abdel-Wahed, T. (2022). Bonding, rheological, and physiochemical characteristics of reclaimed asphalt rejuvenated by crumb rubber modified binder. Journal of Cleaner Production, 133896. https://doi.org/10.1016/j.jclepro.2022.133896
  • Nemati, R., Haslett, K., Dave, E. V., & Sias, J. E. (2019). Development of a rate-dependent cumulative work and instantaneous power-based asphalt cracking performance index. Road Materials and Pavement Design, 20(sup1), S315–S331. https://doi.org/10.1080/14680629.2019.1586753
  • Orešković, M., Santos, J., Mladenović, G., & Rajaković-Ognjanović, V. (2023). The feasibility of using copper slag in asphalt mixtures for base and surface layers based on laboratory results. Construction and Building Materials, 384, 131285. https://doi.org/10.1016/j.conbuildmat.2023.131285
  • Ozer, H., Al-Qadi, I. L., Lambros, J., El-Khatib, A., Singhvi, P., & Doll, B. (2016a). Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters. Construction and Building Materials, 115, 390–401. http://doi.org/10.1016/j.conbuildmat.2016.03.144
  • Ozer, H., Al-Qadi, I. L., Singhvi, P., Khan, T., Rivera-Perez, J., & El-Khatib, A. (2016b). Fracture characterization of asphalt mixtures with high recycled content using illinois semicircular bending test method and flexibility index. Transportation Research Record: Journal of the Transportation Research Board, 2575(1), 130–137. http://doi.org/10.3141/2575-14
  • Pasetto, M., & Baldo, N. (2011). Mix design and performance analysis of asphalt concretes with electric arc furnace slag. Construction and Building Materials, 25(8), 3458–3468. https://doi.org/10.1016/j.conbuildmat.2011.03.037
  • Pattanaik, M. L., Choudhary, R., Kumar, B., & Kumar, A. (2021). Mechanical properties of open graded friction course mixtures with different contents of electric arc furnace steel slag as an alternative aggregate from steel industries. Road Materials and Pavement Design, 22(2), 268–292. https://doi.org/10.1080/14680629.2019.1620120
  • Phil, K. (2017). Matlab deep learning with machine learning, neural networks and artificial intelligence. Apress.
  • Rahbar-Rastegar, R., Zhang, R., Sias, J. E., & Dave, E. V. (2019). Evaluation of laboratory ageing procedures on cracking performance of asphalt mixtures. Road Materials and Pavement Design, 20(sup2), S647–S662. https://doi.org/10.1080/14680629.2019.1633782
  • Rezaeianjouybari, B., & Shang, Y. (2020). Deep learning for prognostics and health management: State of the art,: challenges, and opportunities. Measurement, 163, 107929. https://doi.org/10.1016/j.measurement.2020.107929
  • Safi, F. R., Al-Qadi, I. L., Hossain, K., & Ozer, H. (2019). Total recycled asphalt mixes: Characteristics and field performance. Transportation Research Record, 2673(12), 149–162. https://doi.org/10.1177/0361198119849915
  • Sharifi, E., Sadjadi, S. J., Aliha, M. R. M., & Moniri, A. (2020). Optimization of high-strength self-consolidating concrete mix design using an improved taguchi optimization method. Construction and Building Materials, 236, 117547. https://doi.org/10.1016/j.conbuildmat.2019.117547
  • Solatifar, N., & Lavasani, S. M. (2020). Development of an artificial neural network model for asphalt pavement deterioration using LTPP data. Journal of Rehabilitation in Civil Engineering, 8(1), 121–132. https://doi.org/10.22075/JRCE.2019.17120.1328
  • Wen, H., Wu, S., & Bhusal, S. (2016). Performance evaluation of asphalt mixes containing steel slag aggregate as a measure to resist studded tire wear. Journal of Materials in Civil Engineering, 28(5), 04015191. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001475
  • West, R. C., & Copeland, A. (2015). High RAP asphalt pavements: Japan practice-lesson learned (No. IS 139).
  • Williams, B. A., Willis, J. R., & Shacat, J. (2020). Asphalt pavement industry survey on recycled materials and warm-mix asphalt usage: 2019 (No. IS 138 (10e)).
  • Willis, J. R., Turner, P., Julian, G., Taylor, A. J., Tran, N., Padula, F., & De, G. (2012). Effects of changing virgin binder grade and content on rap mixture properties - NCAT report 12-03. National Center for Ashalt Technology, 12, 1–47.
  • Yang, C., Wu, S., Cui, P., Amirkhanian, S., Zhao, Z., Wang, F., Zhang, L., Wei, M., Zhou, X., & Xie, J. (2022). Performance characterization and enhancement mechanism of recycled asphalt mixtures involving high RAP content and steel slag. Journal of Cleaner Production, 336, 130484. https://doi.org/10.1016/j.jclepro.2022.130484
  • Yang, Z., Yabansu, Y. C., Al-Bahrani, R., Liao, W. K., Choudhary, A. N., Kalidindi, S. R., & Agrawal, A. (2018). Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets. Computational Materials Science, 151, 278–287. https://doi.org/10.1016/j.commatsci.2018.05.014
  • Yusoff, N. I. M., Alhamali, D. I., Ibrahim, A. N. H., Rosyidi, S. A. P., & Hassan, N. A. (2019). Engineering characteristics of nanosilica/polymer-modified bitumen and predicting their rheological properties using multilayer perceptron neural network model. Construction and Building Materials, 204, 781–799. https://doi.org/10.1016/j.conbuildmat.2019.01.203

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.