130
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Optimal time-frequency equivalency factor for approximate interconversion between the dynamic and relaxation moduli

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 762-775 | Received 03 Oct 2022, Accepted 07 Jun 2023, Published online: 18 Jun 2023

References

  • Al-Qadi, I. L., Elseifi, M. A., Yoo, P. J., Dessouky, S. H., Gibson, N., Harman, T., D'Angelo, J., & Petros, K. (2008). Accuracy of current complex modulus selection procedure from vehicular load pulse. Transportation Research Record, 2087(1), 81–90. https://doi.org/10.3141/2087-09
  • Al-Qadi, I. L., Xie, W., & Elseifi, M. A. (2008). Frequency determination from vehicular loading time pulse to predict appropriate complex modulus in MEPDG. Journal of the Association of Asphalt Paving Technologists, 77, 739–772.
  • Cao, D., Zhao, Y., Zhang, J., Jing, P., & Yao, H. (2021). Investigation of the interface condition influence on backcalculated layer properties. Journal of Transportation Engineering, Part B: Pavements, 147(3). https://doi.org/10.1061/JPEODX.0000281
  • Christensen, R. M. (1982). Theory of viscoelasticity (2nd ed.). Academic.
  • Daniel, J. S., & Kim, Y. R. (1998). Relationships among rate-dependent stiffnesses of asphalt concrete using laboratory and field test methods. Transportation Research Record, 1630(1), 3–9. https://doi.org/10.3141/1630-01
  • Dongré, R., Myers, L., & D'Angelo, J. (2006). Conversion of testing frequency to loading time: Impact on performance predictions obtained from the M–E Pavement Design Guide. In Transportation research board 85th annual meeting (pp. 574–579).
  • Fernández, P., Rodríguez, D., Lamela, M. J., & Fernández-Canteli, A. (2011). Study of the interconversion between viscoelastic behaviour functions of PMMA. Mechanics of Time-Dependent Materials, 15(2), 169–180. https://doi.org/10.1007/s11043-010-9128-3
  • Ferry, J. D. (1980). Viscoelastic properties of polymers. Wiley.
  • Kim, S., Etheridge, R. A., Chorzepa, M. G., & Kim, Y. R. (2019). Effects of asphalt mixture characteristics of dynamic modulus and fatigue performance. Research Project No. 16–19, GDOT.
  • Kim, S. S., Lee, H. S., Durham, S. A., Davis, R. B., & Romeo, R. (2022). Updated layer coefficients for GDOT flexible pavement design. Georgia Department of Transportation, FHWA-GA-22-1805.
  • Kim, Y. R. (2009). Modeling of asphalt concrete. The American Society of Civil Engineers.
  • Li, M., & Wang, H. (2018). Prediction of asphalt pavement responses from FWD surface deflections using soft computing methods. Journal of Transportation Engineering, 144(2). https://doi.org/10.1061/JPEODX.0000044
  • MATLAB (2022). Statistics and machine learning toolbox. The MathWorks.
  • Mun, S., Chehab, G. R., & Kim, Y. R. (2007). Determination of time-domain viscoelastic functions using optimized interconversion techniques. Road Materials and Pavement Design, 8(2), 351–365. https://doi.org/10.1080/14680629.2007.9690078
  • Ninomiya, K., & Ferry, J. D. (1959). Some approximate equations useful in the phnomenological treatment of linear viscoelastic data. Journal of Colloid Science, 14(1), 36–48. https://doi.org/10.1016/0095-8522(59)90067-4
  • Park, S. W., & Schapery, R. A. (1999a). Methods of interconversion between linear viscoelastic material functions. Part I—A numerical method based on Prony series. International Journal of Solids and Structures, 36(11), 1653–1675. https://doi.org/10.1016/S0020-7683(98)00055-9
  • Park, S. W., & Schapery, R. A. (1999b). Methods of interconversion between linear viscoelastic material functions. Part II—An approximate analytical method. International Journal of Solids and Structures, 36(11), 1653–1675. https://doi.org/10.1016/S0020-7683(98)00055-9
  • Schwarzl, F. R., & Struik, L. C. E. (1968). Analysis of relaxation measurements. Advances in Molecular Relaxation Processes, 1(3), 201–255. https://doi.org/10.1016/0001-8716(68)80001-X
  • Steele, D., Lee, H. S., Beckemeyer, C., & Van, T. (2021). Moving wheel vs impact deflections and their use in pavement evaluation. Transportation Research Record, 2675(12), 293–305. https://doi.org/10.1177/03611981211028859
  • Tarefder, R. A., & Asifur Rahman, A. S. M. (2016). Interconversion of dynamic modulus to creep compliance and relaxation modulus: Numerical modeling and laboratory validation. Nevada Department of Transportation, 456–438.
  • Tiouajni, S., Di Benedetto, H., Sauzéat, C., & Pouget, S. (2011). Approximation of linear viscoelastic model in the 3 dimensional case with mechanical analogues of finite size. Road Materials and Pavement Design, 12(4), 897–930. https://doi.org/10.1080/14680629.2011.9713899
  • Tschoegl, N. W. (1989). The phenomenological theory of linear viscoelastic behavior: An introduction. Springer-Verlag.
  • Witczak, M. W., & Fonesca, O. A. (1996). Revised predictive model for dynamic (complex) modulus of asphalt mixtures. Transportation Research Record, 1540(1), 15–23. https://doi.org/10.1177/0361198196154000103
  • Zhao, Y., Liu, H., Bai, L., & Tan, Y. (2013). Characterization of linear viscoelastic behavior of asphalt concrete using complex modulus model. Journal of Materials in Civil Engineering, 25(10), 1543–1548. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000688

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.