104
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Dielectric characterisation of rock aggregates with different grain size distributions

, , , , &
Pages 776-789 | Received 21 Oct 2022, Accepted 07 Jun 2023, Published online: 16 Jun 2023

References

  • Adous, M., Quéffélec, P., & Laguerre, L. (2006). Coaxial/cylindrical transition line for broadband permittivity measurement of civil engineering materials. Measurement Science and Technology, 17(8), 2241–2246. https://doi.org/10.1088/0957-0233/17/8/026
  • AL-Qadi, I. L., & Lahouar, S. (2005). Measuring layer thicknesses with GPR – theory to practice. Construction and Building Materials, 19(10), 763–772. https://doi.org/10.1016/j.conbuildmat.2005.06.005
  • Alvarez, F., Alegra, A., & Colmenero, J. (1991). Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions. Physical Review B, 44, 7306–7312. https://doi.org/10.1103/PhysRevB.44.7306
  • Ametek Solartron Analytical ModuLab XM user guide Manual: https://www.ameteksi.com/support-center/solartron-analytical/product-manuals.
  • Andrade, C., Blanco, V. M., Collazo, A., Keddamc, M., Noavo, X. R., & Takenouti, H. (1999). Cement paste hardening process studied by impedance spectroscopy. Electrochimica Acta, 44(24), 4313–4318. https://doi.org/10.1016/S0013-4686(99)00147-4
  • Araujo, S. (2017). Compactness assessment of asphalt pavement and wideband characterization of rocks dielectric properties [PhD thesis]. Université. de Rouen Normandie. https://www.theses.fr/2017NORMR039
  • Araujo, S., Beaucamp, B., Delbreilh, L., Dargent, E., & Fauchard, C. (2017). Compactness/density assessment of newly-paved highway containing recycled asphalt pavement by means of non-nuclear method. Construction and Building Materials, 154, 1151–1163. https://doi.org/10.1016/j.conbuildmat.2017.07.075
  • Asami, K. (2002). Characterization of heterogeneous systems by dielectric spectroscopy. Progress in Polymer Science, 27(8), 1617–1659. https://doi.org/10.1016/S0079-6700(02)00015-1
  • Ayoub, M. W. B. (2018). Measurement devices of dielectric constants in wet materials: Towards a better traceability of the measurement of the moisture in solids [PhD thesis]. Université d’Aix-Marseille. https://www.theses.fr/2018AIXM0228
  • Benedetto, A., Fabio, T., Ciampoli, L. B., & D'Amico, F. (2017). An overview of ground-penetrating radar signal processing techniques for road inspections. Signal Processing, 132, 201–209. https://doi.org/10.1016/j.sigpro.2016.05.016
  • Bourdi, T., Rhazi, J. E., Boone, F., & Ballivy, G. (2008). Application of Jonscher model for the characterization of the dielectric permittivity of concrete. Journal of Physics D: Applied Physics, 41(20), 205410. https://doi.org/10.1088/0022-3727/41/20/205410
  • Chen, L. F., Ong, C. K., Neo, C. P., Varadan, V. V., & Varadan, V. K. (2004). Microwave electronics measurement and materials characterization. John Wiley & Sons. Ltd. Chapter 2.
  • Dérobert, X., Fauchard, C., Côte, P., Le Brusq, E., Guillanton, E., Dauvignac, J. Y., & Pichot, C. (2001). Step-frequency radar applied on thin road layers. Journal of Applied Geophysics, 47(3-4), 317–325. https://doi.org/10.1016/S0926-9851(01)00075-1
  • Dobson, M. C., Ulaby, F. T., Hallikainen, M. T., & El-Rayes, M. A. (1985). Microwave dielectric behavior of wet soil-part II: Dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, GE-23(1), 35–46. https://doi.org/10.1109/TGRS.1985.289498
  • Fan, B., He, D., Liu, Y., & Bai, J. (2017). Influence of thermal treatments on the evolution of conductive paths in carbon nanotube-Al2O3 hybrid reinforced epoxy composites. Langmuir, 33(38), 9680–9686. https://doi.org/10.1021/acs.langmuir.6b03915
  • Fauchard, C., Li, B., Laguerre, L., Héritier, B., Benjelloun, N., & Kadi, M. (2013). Determination of the compaction of hot mix asphalt using high-frequency electromagnetic methods. NDT & E International, 60, 40–51. https://doi.org/10.1016/j.ndteint.2013.07.004
  • Hickson, D. C., Boivin, A. L., Tsai, C. A., Daly, M. G., & Ghent, R. R. (2020). Modeling the dielectric properties of minerals from crystals to bulk powders for improved interpretation of asteroid radar observations. Journal of Geophysical Research: Planets, 125(7), 7. https://doi.org/10.1029/2019JE006141
  • Ihamouten, A., Bosc, F., Guan, B., Le Bastard, C., Fauchard, C., Lambot, S., & Derobert, X. (2018). Full-waveform inversion using a stepped-frequency GPR to characterize the tack coat in hot-mix asphalt (HMA) layers of flexible pavements. NDT & E International, 95, 17–25. https://doi.org/10.1016/j.ndteint.2017.12.006
  • Jonscher, A. K. (1999). Dielectric relaxation in solids. Journal of Physics D: Applied Physics, 32(14), R57–R70. https://doi.org/10.1088/0022-3727/32/14/201
  • Kaatze, U. (2013). Measuring the dielectric properties of materials. Ninety-year development from low-frequency techniques to broadband spectroscopy and high-frequency imaging. Measurement Science and Technology, 24(1), 0012005. https://doi.org/10.1088/0957-0233/24/1/012005
  • Kasap, S. O. (2007). Principles of electronic materials and devices (pp. 583–609). McGraw Hill Education.
  • Lai, W. W. L., Dérobert, X., & Annan, A. P. (2018). A review of ground penetrating radar application in civil engineering: A 30-year journey from locating and testing to imaging and diagnosis. NDT & E International, 96, 58–78. https://doi.org/10.1016/j.ndteint.2017.04.002
  • Li, Z.-S., & Tang, L.-S. (2019). Using synchrotron-based X-ray microcomputed tomography to characterize water distribution in compacted soils. Advances in Materials Science and Engineering, 2019, 1–11. https://doi.org/10.1155/2019/7147283
  • Lichtenecker, K., & Rother, K. (1931). Die Herleitung des logarithmischen Mischungsgesetzes aus allgemeinen Prinzipien der Stationaren Stromung. Physikalische Zeitschrift, 32, 255–260.
  • Looyenga, H. (1965). Dielectric constants of heterogeneous mixtures. Physica, 31(3), 401–406. https://doi.org/10.1016/0031-8914(65)90045-5
  • Matous, K., Geers, M. G. D., Kouznetsova, V. G., & Gillman, A. (2017). A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. Journal of Computational Physics, 330, 192–220. https://doi.org/10.1016/j.jcp.2016.10.070
  • Robert, A. (1998). Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation. Journal of Applied Geophysics, 40(1-3), 89–94. https://doi.org/10.1016/S0926-9851(98)00009-3
  • Robinson, D. A., & Friedman, S. P. (2003). A method for measuring the solid particle permittivity or electrical conductivity of rocks, sediments and granular materials. Journal of Geophysical Research: Solid Earth, 108(2), B2. https://doi.org/10.1029/2001JB000691
  • Saba, S., Delage, P., Lenoir, N., Cui, Y. J., Tang, A. M., & Barnichon, J.-D. (2014). Further insight into the microstructure of compacted bentonite–sand mixture. Engineering Geology, 168, 141–148. https://doi.org/10.1016/j.enggeo.2013.11.007
  • Sihvola, A., & Kong, J. A. (1988). Effective permittivity of dielectric mixtures. IEEE Transactions on Geoscience and Remote Sensing, 26(4), 420–429. https://doi.org/10.1109/36.3045
  • Smith, I. B., Lalick, D. E., Rezza, C., Horgan, B. H. N., Whitten, J. L., Nerozzi, S., & Holt, J. W. (2021). A solid interpretation of bright radar reflectors under the mars south polar ice. Geophysical Research Letters, 48, 5. https://doi.org/10.1029/2021GL093618
  • Spanoudaki, A., & Pelster, R. (2001). Effective dielectric properties of composite materials: The dependence on the particle size distribution. Physical Review B, 64(6), 064205. https://doi.org/10.1103/PhysRevB.64.064205
  • Standard Test Method for Density and Relative Density (Specific Gravity) of Liquids by Bingham Pycnometer, ASTM D1217-20.
  • Tuncer, E., Serdyuk, Y. V., & Gubanski, S. M. (2002). Dielectric mixtures: Electrical properties and modeling. IEEE Transactions on Dielectrics and Electrical Insulation, 9(5), 809–828. https://doi.org/10.1109/TDEI.2002.1038664
  • Ulaby, F. T., Bengal, T. H., Dobson, M. C., East, J. R., Garvin, J. B., & Evans, D. L. (1990). Microwave dielectric properties of dry rocks. IEEE Transactions on Geoscience and Remote Sensing, 28(3), 325–336. https://doi.org/10.1109/36.54359
  • Ulrich, T. J., McCall, K. R., & Guyer, R. A. (2002). Determination of elastic moduli of rock samples using resonant ultrasound spectroscopy. The Journal of the Acoustical Society of America, 111, 1667–1674. https://doi.org/10.1121/1.1463447
  • Wagner, N., Bore, T., Robinet, J. C., Coelho, D., Taillade, F., & Delepine-Lesoille, S. (2013). Dielectric relaxation behavior of callovo-oxfordian clay rock: A hydraulic-mechanical-electromagnetic coupling approach. Journal of Geophysical Research: Solid Earth, 118(9), 4729–4744. https://doi.org/10.1002/jgrb.50343
  • Zheng, Y. L., Zhao, X. B., Zhao, Q. H., Li, J. C., & Zhang, Q. B. (2020). Dielectric properties of hard rock minerals and implications for microwave-assisted rock fracturing. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6, https://doi.org/10.1007/s40948-020-00147-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.