153
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigating the properties of asphalt binder modified by high- and low-density polyethylene polymer and nano-silica

&
Pages 838-859 | Received 09 Jul 2022, Accepted 22 Jun 2023, Published online: 21 Jul 2023

References

  • Airey, G. D. (2003). Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel, 82(14), 1709–1719. https://doi.org/10.1016/S0016-2361(03)00146-7
  • Al-Hadidy, A. I., & Yi-qiu, T. (2009). Effect of polyethylene on life of flexible pavements. Construction and Building Materials, 23(3), 1456–1464. https://doi.org/10.1016/j.conbuildmat.2008.07.004
  • Alas, M., Ali, S. I. A., Abdulhadi, Y., & Abba, S. I. (2020). Experimental evaluation and modeling of polymer nanocomposite modified asphalt binder using ANN and ANFIS. Journal of Materials in Civil Engineering, 32(10), 04020305. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003404
  • Alataş, T., & Yilmaz, M. (2013). Effects of different polymers on mechanical properties of bituminous binders and hot mixtures. Construction and Building Materials, 42, 161–167. https://doi.org/10.1016/j.conbuildmat.2013.01.027
  • Alghrafy, Y. M., Abd Alla, E. S. M., & El-Badawy, S. M. (2021). Rheological properties and aging performance of sulfur extended asphalt modified with recycled polyethylene waste. Construction and Building Materials, 273, Article 121771. https://doi.org/10.1016/j.conbuildmat.2020.121771
  • Alhamali, D. I., Wu, J., Liu, Q., Hassan, N. A., Yusoff, N. I. M., & Ali, S. I. A. (2016). Physical and rheological characteristics of polymer modified bitumen with nanosilica particles. Arabian Journal for Science and Engineering, 41(4), 1521–1530. https://doi.org/10.1007/s13369-015-1964-7
  • Ameri, M., Vamegh, M., Rooholamini, H., & Haddadi, F. (2018). Investigating effects of nano/SBR polymer on rutting performance of binder and asphalt mixture. Advances in Materials Science and Engineering, 2018, Article 5891963. https://doi.org/10.1155/2018/5891963
  • Anderson, D. A., Christensen, D. W., Bahia, H. U., Dongre, R., Sharma, M. G., Antle, C. E., & Button, C. E. J. (1994). Binder characterization and evaluation, Vol. III, Physical characterization, and strategic highway research program report, SHRP A-369, Washington, DC.
  • Attaelmanan, M., Feng, C. P., & Al-Hadidy, A. I. (2011). Laboratory evaluation of HMA with high density polyethylene as a modifier. Construction and Building Materials, 25(5), 2764–2770. https://doi.org/10.1016/j.conbuildmat.2010.12.037
  • Bala, N., Napiah, M., Kamaruddin, I., & Danlami, N. (2017). Rheological properties investigation of bitumen modified with nanosilica and polyethylene polymer. International Journal of Advanced and Applied Sciences, 4(10), 165–174. https://doi.org/10.21833/ijaas.2017.010.023
  • Becker, Y., Mendez, M. P., & Rodriguez, Y. (2001). Polymer modified asphalt. Vision Tecnologica, 9(1), 39–50.
  • Behnood, A., & Gharehveran, M. M. (2019). Morphology, rheology, and physical properties of polymer-modified asphalt binders. European Polymer Journal, 112, 766–791. https://doi.org/10.1016/j.eurpolymj.2018.10.049
  • Bhat, F. S., & Mir, M. S. (2021). A study investigating the influence of nano Al2O3 on the performance of SBS modified asphalt binder. Construction and Building Materials, 271, Article 121499. https://doi.org/10.1016/j.conbuildmat.2020.121499
  • Brasileiro, L., Moreno-Navarro, F., Tauste-Martínez, R., Matos, J., & Rubio-Gámez, M. D. C. (2019). Reclaimed polymers as asphalt binder modifiers for more sustainable roads: A review. Sustainability, 11(3), 646. https://doi.org/10.3390/su11030646
  • Cheng, Y., Han, H., Fang, C., Li, H., Huang, Z., & Su, J. (2020). Preparation and properties of nano-CaCO3/waste polyethylene/styrene-butadiene-styrene block polymer-modified asphalt. Polymer Composites, 41(2), 614–623. https://doi.org/10.1002/pc.25392
  • Clopotel, C. S., & Bahia, H. U. (2012). Importance of elastic recovery in the DSR for binders and mastics. Engineering Journal, 16(4), 99–106. https://doi.org/10.4186/ej.2012.16.4.99
  • Du, Z., Jiang, C., Yuan, J., Xiao, F., & Wang, J. (2020). Low temperature performance characteristics of polyethylene modified asphalts – A review. Construction and Building Materials, 264, 120704. https://doi.org/10.1016/j.conbuildmat.2020.120704
  • Enieb, M., & Diab, A. (2017). Characteristics of asphalt binder and mixture containing nanosilica. International Journal of Pavement Research and Technology, 10(2), 148–157. https://doi.org/10.1016/j.ijprt.2016.11.009
  • Fang, C., Yu, R., Zhang, Y., Hu, J., Zhang, M., & Mi, X. (2012). Combined modification of asphalt with polyethylene packaging waste and organophilic montmorillonite. Polymer Testing, 31(2), 276–281.
  • Fang, C., Liu, P., Yu, R., & Liu, X. (2014a). Preparation process to affect stability in waste polyethylene-modified bitumen. Construction and Building Materials, 54, 320–325.
  • Fang, C., Wu, C., Hu, J., Yu, R., Zhang, Z., Nie, L., Zhou, S., & Mi, X. (2014b). Pavement properties of asphalt modified with packaging-waste polyethylene. Journal of Vinyl and Additive Technology, 20(1), 31–35. https://doi.org/10.1002/vnl.21328
  • Galooyak, S. S., Dabir, B., Nazarbeygi, A. E., & Moeini, A. (2010). Rheological properties and storage stability of bitumen/SBS/montmorillonite composites. Construction and Building Materials, 24(3), 300–307. https://doi.org/10.1016/j.conbuildmat.2009.08.032
  • Gama, D. A., Yan, Y., Rodrigues, J. K. G., & Roque, R. (2018). Optimizing the use of reactive terpolymer, polyphosphoric acid and high-density polyethylene to achieve asphalt binders with superior performance. Construction and Building Materials, 169, 522–529. https://doi.org/10.1016/j.conbuildmat.2018.02.206
  • Ghanoon, S. A., Tanzadeh, J., & Mirsepahi, M. (2020). Laboratory evaluation of the composition of nano-clay, nano-lime and SBS modifiers on rutting resistance of asphalt binder. Construction and Building Materials, 238, Article 117592. https://doi.org/10.1016/j.conbuildmat.2019.117592
  • Giustozzi, F., Crispino, M., Toraldo, E., & Mariani, E. (2015). Mix design of polymer-modified and fiber-reinforced warm-mix asphalts with high amount of reclaimed asphalt pavement: Achieving sustainable and high-performing pavements. Transportation Research Record, 2523(1), 3–10. https://doi.org/10.3141/2523-01
  • Gorkem, C., & Sengoz, B. (2009). Predicting stripping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime. Construction and Building Materials, 23(6), 2227–2236. https://doi.org/10.1016/j.conbuildmat.2008.12.001
  • Hınıslıoğlu, S., & Ağar, E. (2004). Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix. Materials Letters, 58(3-4), 267–271. https://doi.org/10.1016/S0167-577X(03)00458-0
  • Isacsson, U., & Lu, X. (1995). Testing and appraisal of polymer modified road bitumens – State of the art. Materials and Structures, 28(3), 139–159. https://doi.org/10.1007/BF02473221
  • Kandhal, P. S. (1977). Low-temperature ductility in relation to pavement performance (Vol. 628, pp. 95–106). West Conshohocken, PA, USA: ASTM International.
  • Lewandowski, L. H. (1994). Polymer modification of paving asphalt binders. Rubber Chemistry and Technology, 67(3), 447–480. https://doi.org/10.5254/1.3538685
  • Li, S., Xu, W., Zhang, F., Wu, H., & Zhao, P. (2022). Effect of graphene oxide on the low-temperature crack resistance of polyurethane–SBS-modified asphalt and asphalt mixtures. Polymers, 14(3), 453. https://doi.org/10.3390/polym14030453
  • Liang, M., Xin, X., Fan, W., Wang, H., Jiang, H., Zhang, J., & Yao, Z. (2019). Phase behavior and hot storage characteristics of asphalt modified with various polyethylene: Experimental and numerical characterizations. Construction and Building Materials, 203, 608–620. https://doi.org/10.1016/j.conbuildmat.2019.01.095
  • Lin, P., Huang, W., Li, Y., Tang, N., & Xiao, F. (2017). Investigation of influence factors on low temperature properties of SBS modified asphalt. Construction and Building Materials, 154, 609–622. https://doi.org/10.1016/j.conbuildmat.2017.06.118
  • Little, D. N., Bhasin, A., & Lytton, R. (2017). Micromechanics modeling of performance of asphalt concrete based on surface energy. Modelling asphalt concrete. McGraw-Hill Professional. https://accessengineeringlibrary com/browse/modeling-of-asphalt-concrete/p20017c1a9970355001
  • Mahali, I., & Sahoo, U. C. (2019). Rheological characterization of nanocomposite modified asphalt binder. International Journal of Pavement Research and Technology, 12(6), 589–594. https://doi.org/10.1007/s42947-019-0070-8
  • Mamun, A. A., & Arifuzzaman, M. (2018). Nano-scale moisture damage evaluation of carbon nanotube-modified asphalt. Construction and Building Materials, 193, 268–275. https://doi.org/10.1016/j.conbuildmat.2018.10.155
  • Mamuye, Y., Do, N. D., & Liao, M. C. (2022). Nano-Al2O3 composite on intermediate and high temperature properties of neat and modified asphalt binders and their effect on hot mix asphalt mixtures. Available at SSRN 4017442.
  • Nizamuddin, S., Jamal, M., Gravina, R., & Giustozzi, F. (2020). Recycled plastic as bitumen modifier: The role of recycled linear low-density polyethylene in the modification of physical, chemical and rheological properties of bitumen. Journal of Cleaner Production, 266, Article 121988. https://doi.org/10.1016/j.jclepro.2020.121988
  • Nuñez, J. Y. M., Domingos, M. D. I., & Faxina, A. L. (2014). Susceptibility of low-density polyethylene and polyphosphoric acid-modified asphalt binders to rutting and fatigue cracking. Construction and Building Materials, 73, 509–514. https://doi.org/10.1016/j.conbuildmat.2014.10.002
  • Obaid, H. A. (2021). Characteristics of warm mixed asphalt modified by waste polymer and NS. International Journal of Pavement Research and Technology, 14(3), 397–401. https://doi.org/10.1007/s42947-020-0061-9
  • Othman, A. M. (2010). Effect of low-density polyethylene on fracture toughness of asphalt concrete mixtures. Journal of Materials in Civil Engineering, 22(10), 1019–1024. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000106
  • Padhan, R. K., & Sreeram, A. (2018). Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives. Construction and Building Materials, 188, 772–780. https://doi.org/10.1016/j.conbuildmat.2018.08.155
  • Pereira, L., Freire, A. C., da Costa, M. S., Antunes, V., Quaresma, L., & Micaelo, R. (2018). Experimental study of the effect of filler on the ductility of filler-bitumen mastics. Construction and Building Materials, 189, 1045–1053. https://doi.org/10.1016/j.conbuildmat.2018.09.063
  • Pérez-Lepe, A., Martínez-Boza, F. J., Attané, P., & Gallegos, C. (2006). Destabilization mechanism of polyethylene-modified bitumen. Journal of Applied Polymer Science, 100(1), 260–267. https://doi.org/10.1002/app.23091
  • Punith, V. S., & Veeraragavan, A. J. J. O. M. I. C. E. (2007). Behavior of asphalt concrete mixtures with reclaimed polyethylene as additive. Journal of Materials in Civil Engineering, 19(6), 500–507. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:6(500)
  • Ruan, Y., Davison, R. R., & Glover, C. J. (2003). An investigation of asphalt durability: Relationships between ductility and rheological properties for unmodified asphalts. Petroleum Science and Technology, 21(1-2), 231–254. https://doi.org/10.1081/LFT-120016946
  • Shafabakhsh, G. H., & Ani, O. J. (2015). Experimental investigation of effect of nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates. Construction and Building Materials, 98, 692–702. https://doi.org/10.1016/j.conbuildmat.2015.08.083
  • Shafabakhsh, G., & Rajabi, M. (2019). The fatigue behavior of SBS/nanosilica composite modified asphalt binder and mixture. Construction and Building Materials, 229, Article 116796. https://doi.org/10.1016/j.conbuildmat.2019.116796
  • Tabatabaee, H. A., Clopotel, C., Arshadi, A., & Bahia, H. (2013). Critical problems with using the asphalt ductility test as a performance index for modified binders. Transportation Research Record: Journal of the Transportation Research Board, 2370(1), 84–91. https://doi.org/10.3141/2370-11
  • Whiteoak, D., & Read, J. (2005). Shell bitumen handbook. London, England: Shell Bitumen.
  • Xiao, F., Amirkhanian, S., Wang, H., & Hao, P. (2014). Rheological property investigations for polymer and polyphosphoric acid modified asphalt binders at high temperatures. Construction and Building Materials, 64, 316–323. https://doi.org/10.1016/j.conbuildmat.2014.04.082
  • Yan, K., Tian, S., Chen, J., & Liu, J. (2020). High temperature rheological properties of APAO and EVA compound modified asphalt. Construction and Building Materials, 233, Article 117246. https://doi.org/10.1016/j.conbuildmat.2019.117246
  • Yu, J. Y., Zhang, H. L., Sun, P., & Zhao, S. F. (2020). Laboratory performances of nano-particles/polymer modified asphalt mixtures developed for the region with hot summer and cold winter and field evaluation. Road Materials and Pavement Design, 21(6), 1529–1544. https://doi.org/10.1080/14680629.2018.1557070
  • Yusoff, N. I. M., Breem, A. A. S., Alattug, H. N., Hamim, A., & Ahmad, J. (2014). The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures. Construction and Building Materials, 72, 139–147. https://doi.org/10.1016/j.conbuildmat.2014.09.014
  • Zhang, F., & Hu, C. (2016). The research for crumb rubber/waste plastic compound modified asphalt. Journal of Thermal Analysis and Calorimetry, 124(2), 729–741. https://doi.org/10.1007/s10973-015-5198-4
  • Zhang, Q., Huang, T., Ma, H., & Qi, H. (2022). Aging resistance properties of NS/SBS composite modified asphalt. SBS Composite Modified Asphalt.
  • Zhang, Q., Khan, M. U., Lin, X., Yi, W., & Lei, H. (2020). Green-composites produced from waste residue in pulp and paper industry: A sustainable way to manage industrial wastes. Journal of Cleaner Production, 262, Article 121251. https://doi.org/10.1016/j.jclepro.2020.121251

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.