252
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Neural networks implementation for the environmental optimisation of the recycled concrete aggregate inclusion in warm mix asphalt

ORCID Icon, , ORCID Icon &
Pages 941-966 | Received 03 May 2022, Accepted 22 Jun 2023, Published online: 06 Jul 2023

References

  • Abass, B. J., & Albayati, A. H. (2020). Influence of recycled concrete aggregate treatment methods on performance of sustainable warm mix asphalt. Cogent Engineering, 7(1), Article 1718822. https://doi.org/10.1080/23311916.2020.1718822
  • Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., & Inman, D. J. (2017). Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. Journal of Sound and Vibration, 388, 154–170. https://doi.org/10.1016/j.jsv.2016.10.043
  • Aghdam, R. F., Ahmad, N., Naveed, A., & Azar, B. B. (2023). On the relationship between energy and development: A comprehensive note on causation and correlation. Energy Strategy Reviews, 46(101034), 1–43. https://doi.org/10.1016/j.esr.2022.101034
  • Albayati, A., Wang, Y., Wang, Y., & Haynes, J. (2018). A sustainable pavement concrete using warm mix asphalt and hydrated lime treated recycled concrete aggregates. Sustainable Materials and Technologies, 18, e00081. https://doi.org/10.1016/j.susmat.2018.e00081
  • Almeida-Costa, A., & Benta, A. (2016). Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt. Journal of Cleaner Production, 112, 2308–2317. https://doi.org/10.1016/j.jclepro.2015.10.077
  • Anthonissen, J., Braet, J., & Van den Bergh, W. (2015). Life cycle assessment of bituminous pavements produced at various temperatures in the Belgium context. Transportation Research Part D: Transport and Environment, 41, 306–317. https://doi.org/10.1016/j.trd.2015.10.011
  • Aurangzeb, Q., Al-Qadi, I. L., Ozer, H., & Yang, R. (2014). Hybrid life cycle assessment for asphalt mixtures with high RAP content. Resources, Conservation and Recycling, 83, 77–86. https://doi.org/10.1016/j.resconrec.2013.12.004
  • Autelitano, F., Bianchi, F., & Giuliani, F. (2017). Airborne emissions of asphalt/wax blends for warm mix asphalt production. Journal of Cleaner Production, 164, 749–756. https://doi.org/10.1016/j.jclepro.2017.06.247
  • Babashamsi, P., Khahro, S. H., Omar, H. A., Rosyidi, S. A. P., Al-Sabaeei, A. M., Milad, A., Bilema, M., Sutanto, M. H., & Yusoff, N. I. M. (2022). A comparative study of probabilistic and deterministic methods for the direct and indirect costs in life-cycle cost analysis for airport pavements. Sustainability, 14(3819), 1–20. https://doi.org/10.3390/su14073819
  • Bare, J. (2011). TRACI 2.0: The tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technologies and Environmental Policy, 13(5), 687–696. https://doi.org/10.1007/s10098-010-0338-9
  • Bare, J., Young, D., & Hopton, M. (2012). EPA/600/R-12/554: Tool for the reduction and assessment of chemical and other environmental impacts (TRACI) – User’s manual. U.S. Environmental Protection Agency.
  • Bastidas-Martínez, J. G., Reyes-Lizcano, F. A., & Rondón-Quintana, H. A. (2022). Use of recycled concrete aggregates in asphalt mixtures for pavements: A review. Journal of Traffic and Transportation Engineering (English Edition), 9(5), 725–741. https://doi.org/10.1016/j.jtte.2022.08.001
  • Basu, S., Mukhopadhyay, S., Karki, M., DiBiano, R., Ganguly, S., Nemani, R., & Gayaka, S. (2018). Deep neural networks for texture classification – A theoretical analysis. Neural Networks, 97, 173–182. https://doi.org/10.1016/j.neunet.2017.10.001
  • Behnood, A. (2020). A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties. Journal of Cleaner Production, 259, 120817. https://doi.org/10.1016/j.jclepro.2020.120817
  • Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828. https://doi.org/10.1109/TPAMI.2013.50
  • Blankendaal, T., Schuur, P., & Voordijk, H. (2014). Reducing the environmental impact of concrete and asphalt: A scenario approach. Journal of Cleaner Production, 66, 27–36. https://doi.org/10.1016/j.jclepro.2013.10.012
  • Calabi-Floody, A. T., Valdés-Vidal, G. A., Sanchez-Alonso, E., & Mardones-Parra, L. A. (2020). Evaluation of Gas emissions, energy consumption and production costs of warm Mix asphalt (WMA) involving natural zeolite and reclaimed asphalt pavement (RAP). Sustainability, 12(16), 6410. https://doi.org/10.3390/su12166410
  • Cao, W., Wang, X., Ming, Z., & Gao, J. (2018). A review on neural networks with random weights. Neurocomputing, 275, 278–287. https://doi.org/10.1016/j.neucom.2017.08.040
  • Capitão, S. D., Picado-Santos, L. G., & Martinho, F. (2012). Pavement engineering materials: Review on the use of warm-mix asphalt. Construction and Building Materials, 36, 1016–1024. https://doi.org/10.1016/j.conbuildmat.2012.06.038
  • Cassiani, J., Dugarte, M., & Martinez-Arguelles, G. (2021). Evaluation of the chemical index model for predicting supplementary cementitious material dosage to prevent the alkali-silica reaction in concrete. Construction and Building Materials, 275(122158), 1–12. https://doi.org/10.1016/j.conbuildmat.2020.122158
  • Cha, Y. J., & Choi, W. (2017). Deep learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil and Infrastructure Engineering, 32(5), 361–378. https://doi.org/10.1111/mice.12263
  • Chachlakis, D. G., Zhou, T., Ahmad, F., & Markopoulos, P. P. (2021). Minimum mean-squared-error autocorrelation processing in coprime arrays. Digital Signal Processing, 114, Article 103034. https://doi.org/10.1016/j.dsp.2021.103034
  • Cheraghian, G., Cannone Falchetto, A., You, Z., Chen, S., Kim, Y. S., Westerhoff, J., Moon, K. H., & Wistuba, M. P. (2020). Warm mix asphalt technology: An up to date review. Journal of Cleaner Production, 268, Article 122128. https://doi.org/10.1016/j.jclepro.2020.122128
  • Cho, Y. H., Yun, T., Kim, I. T., & Choi, N. R. (2011). The application of recycled concrete aggregate (RCA) for hot mix asphalt (HMA) base layer aggregate. KSCE Journal of Civil Engineering, 15(3), 473–478. https://doi.org/10.1007/s12205-011-1155-3
  • D’Angelo, J., Harm, E., Bartoszek, J., Baumgardner, G., Corrigan, M., Cowsert, J., Harman, T., Jamshidi, M., Jones, W., Newcomb, D., Prowell, B., Sines, R., & Yeaton, B. (2008). FHWA-PL-08-007: Warm-mix asphalt – European practice. Federal Highway Administration.
  • de Brito Prado Vieira, L., Domingues de Figueiredo, A., & John, V. M. (2020). Evaluation of the use of crushed returned concrete as recycled aggregate in ready-mix concrete plant. Journal of Building Engineering, 31, 101408. https://doi.org/10.1016/j.jobe.2020.101408
  • Diab, A., Sangiorgi, C., Ghabchi, R., Zaman, M., & Wahaballa, A. (2016). Warm Mix Asphalt (WMA) technologies: Benefits and drawbacks – A literature review. In Functional Pavement Design – Proceedings of the 4th Chinese-European Workshop on Functional Pavement Design, CEW 2016, 1145–1154. https://doi.org/10.1201/9781315643274-127
  • Diefenderfer, S. (2017). FHWA/VTRC 18-R12: Performance of foamed warm mix asphalt in virginia over four to six years. Virginia Transportation Research Council.
  • Dinis, M., & Lopes, M. (2015). Warm mix recycled asphalt – A sustainable solution. Journal of Cleaner Production, 107, 310–316. https://doi.org/10.1016/j.jclepro.2015.04.065
  • Elhami, B., Khanali, M., & Akram, A. (2017). Combined application of artificial neural networks and life cycle assessment in lentil farming in Iran. Information Processing in Agriculture, 4(1), 18–32. https://doi.org/10.1016/j.inpa.2016.10.004
  • Esnouf, A., Heijungs, R., Coste, G., Latrille, É, Steyer, J. P., & Hélias, A. (2019). A tool to guide the selection of impact categories for LCA studies by using the representativeness index. Science of the Total Environment, 658, 768–776. https://doi.org/10.1016/j.scitotenv.2018.12.194
  • Esnouf, A., Latrille, E., Steyer, J., & Helias, A. (2018). Which impact categories are relevant for LCA results interpretation? In SETAC Europe 28th Annual Meeting – At: Rome.
  • Estakhri, C., Button, J., & Alvarez, A. (2010). FHWA/TX-10/0-5597-2: Field and laboratory investigation of warm mix asphalt in Texas. Texas Department of Transportation.
  • Farh, N. K., Awed, A. M., & El-Badawy, S. M. (2020). Artificial neural network model for predicating resilient modulus of silty subgrade soil. American Journal of Civil Engineering and Architecture, 8(2), 52–55. https://doi.org/10.12691/ajcea-8-2-4
  • Giani, M. I., Dotelli, G., Brandini, N., & Zampori, L. (2015). Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling. Resources, Conservation and Recycling, 104, 224–238. https://doi.org/10.1016/j.resconrec.2015.08.006
  • Guo, M., Liu, H., Jiao, Y., Mo, L., Tan, Y., Wang, D., & Liang, M. (2020). Effect of WMA-RAP technology on pavement performance of asphalt mixture: A state-of-the-art review. Journal of Cleaner Production, 266, Article 121704. https://doi.org/10.1016/j.jclepro.2020.121704
  • Gupta, A., Harrison, P. J., Wieslander, H., Pielawski, N., Kartasalo, K., Partel, G., Solorzano, L., Suveer, A., Klemm, A. H., Spjuth, O., Sintorn, I. M., & Wählby, C. (2019). Deep learning in image cytometry: A review. Cytometry Part A, 95(4), 366–380. https://doi.org/10.1002/cyto.a.23701
  • Gupta, H. V., & Kling, H. (2011). On typical range, sensitivity, and normalization of mean squared error and nash-sutcliffe efficiency type metrics. Water Resources Research, 47(10), W10601. https://doi.org/10.1029/2011WR010962
  • Häkkinen, T., & Mäkelä, K. (1996). Environmental adaption of concrete: Environmental impact of concrete and asphalt pavements. VTT TIEDOTTEITA, Technical Research Centre of Finland. Espoo, Finland.
  • Hamdar, Y. S., Kassem, H. A., & Chehab, G. R. (2020). Using different performance measures for the sustainability assessment of asphalt mixtures: Case of warm mix asphalt in a hot climate. Road Materials and Pavement Design, 21(1), 1–24. https://doi.org/10.1080/14680629.2018.1474795
  • Han, J., Jentzen, A., & Weinan, E. (2018). Solving high-dimensional partial differential equations using deep learning. Proceedings of the National Academy of Sciences, 115(34), 8505–8510. https://doi.org/10.1073/pnas.1718942115
  • Harvey, J. T., Meijer, J., Ozer, H., Al-Qadi, I. L., Saboori, A., & Kendall, A. (2016). FHWA-HIF-16-014: Pavement life cycle assessment framework. Federal Highway Administration, 1–244.
  • Hasan, M. R., You, Z., & Yang, X. (2017). A comprehensive review of theory, development, and implementation of warm mix asphalt using foaming techniques. Construction and Building Materials, 152, 115–133. https://doi.org/10.1016/j.conbuildmat.2017.06.135
  • Hasan, U., Whyte, A., & Al Jassmi, H. (2020). Life cycle assessment of roadworks in United Arab Emirates: Recycled construction waste, reclaimed asphalt pavement, warm-mix asphalt and blast furnace slag use against traditional approach. Journal of Cleaner Production, 257, Article 120531. https://doi.org/10.1016/j.jclepro.2020.120531
  • Hassan, M. (2010). Evaluation of the environmental and economic impacts of warm-mix asphalt using life-cycle assessment. International Journal of Construction Education and Research, 6(3), 238–250. https://doi.org/10.1080/15578771.2010.507619
  • Herrmann, I. T., Lundberg-Jensen, M., Jørgensen, A., Stidsen, T., Spliid, H., & Hauschild, M. (2014). Enabling optimization in LCA: From ‘ad hoc’ to ‘structural’ LCA approach – Based on a biodiesel well-to-wheel case study. The International Journal of Life Cycle Assessment, 19(1), 194–205. https://doi.org/10.1007/s11367-013-0615-z
  • Herrmann, I. T., & Moltesen, A. (2015). Does it matter which life cycle assessment (LCA) tool you choose? A comparative assessment of SimaPro and GaBi. Journal of Cleaner Production, 86, 163–169. https://doi.org/10.1016/j.jclepro.2014.08.004
  • Hirose, M. Y. (2019). A class of general adjusted maximum likelihood methods for desirable mean squared error estimation of EBLUP under the Fay–Herriot small area model. Journal of Statistical Planning and Inference, 199, 302–310. https://doi.org/10.1016/j.jspi.2018.07.006
  • Huang, M., Dong, Q., Ni, F., & Wang, L. (2021). LCA and LCCA based multi-objective optimization of pavement maintenance. Journal of Cleaner Production, 283, 124583. https://doi.org/10.1016/j.jclepro.2020.124583
  • Inyim, P., Pereyra, J., Bienvenu, M., & Mostafavi, A. (2016). Environmental assessment of pavement infrastructure: A systematic review. Journal of Environmental Management, 176, 128–138. https://doi.org/10.1016/j.jenvman.2016.03.042
  • ISO. (2006a). ISO 14040: Environmental management – Life cycle assessment – Principles and framework. International Organization for Standardization, 1–20.
  • ISO. (2006b). ISO 14044: Environmental management – Life cycle assessment – Requirements and guidelines. International Organization for Standardization, 1–46.
  • Jamshidi, A., Hamzah, M. O., & You, Z. (2013). Performance of warm Mix asphalt containing Sasobit®: state-of-the-art. Construction and Building Materials, 38, 530–553. https://doi.org/10.1016/j.conbuildmat.2012.08.015
  • Jeong, J.-H., Jo, H., & Ditzler, G. (2020). Convolutional neural networks for pavement roughness assessment using calibration-free vehicle dynamics. Computer-Aided Civil and Infrastructure Engineering, 35(11), 1209–1229. https://doi.org/10.1111/mice.12546
  • Jeremiah, J. J., Abbey, S. J., Booth, C. A., & Kashyap, A. (2021). Results of application of artificial neural networks in predicting geo-mechanical properties of stabilised clays – A review. Geotechnics, 1(1), 147–171. https://doi.org/10.3390/geotechnics1010008
  • Kearns, M. J., & Vazirani, U. V. (1994). An introduction to computational learning theory. MIT Press.
  • KERAS. (2021). Keras API reference/optimizers/RMSprop. Keras Website.
  • Khan, M. E., Liu, Z., Tangkaratt, V., & Gal, Y. (2017). Vprop: Variational inference using RMSprop. In 31st Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 1–8.
  • Khanali, M., Akram, A., Behzadi, J., Mostashari-Rad, F., Saber, Z., Chau, K. W., & Nabavi-Pelesaraei, A. (2021). Multi-objective optimization of energy use and environmental emissions for walnut production using imperialist competitive algorithm. Applied Energy, 284, Article 116342. https://doi.org/10.1016/j.apenergy.2020.116342
  • Kheradmand, B., Muniandy, R., Hua, L. T., Yunus, R. B., & Solouki, A. (2014). An overview of the emerging warm mix asphalt technology. International Journal of Pavement Engineering, 15(1), 79–94. https://doi.org/10.1080/10298436.2013.839791
  • Komly, C. E., Azzaro-Pantel, C., Hubert, A., Pibouleau, L., & Archambault, V. (2012). Multiobjective waste management optimization strategy coupling life cycle assessment and genetic algorithms: Application to PET bottles. Resources, Conservation and Recycling, 69, 66–81. https://doi.org/10.1016/j.resconrec.2012.08.008
  • Koyuncu, I. (2018). Implementation of high speed tangent sigmoid transfer function approximations for artificial neural network applications on FPGA. Advances in Electrical and Computer Engineering, 18(3), 79–86. https://doi.org/10.4316/AECE.2018.03011
  • Kriegeskorte, N., & Golan, T. (2019). Neural network models and deep learning. Current Biology, 29(7), R231–R236. https://doi.org/10.1016/j.cub.2019.02.034
  • Lapalu, L., Juery, C., Jullien, A., & Tamagny, P. (2012). Warm asphalt mixes made with a ‘ready to use’ bitumen: An experimental field trial. In 5th Eurasphalt & Eurobitume Congress, O5EE-406.
  • Li, L., Qiao, Z., Liu, Y., & Chen, Y. (2017). A convergent smoothing algorithm for training max–min fuzzy neural networks. Neurocomputing, 260, 404–410. https://doi.org/10.1016/j.neucom.2017.04.046
  • Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11–26. https://doi.org/10.1016/j.neucom.2016.12.038
  • Liu, X., Wang, H., Li, Z., & Qin, L. (2021). Deep learning in ECG diagnosis: A review. Knowledge-Based Systems, 227, 107187. https://doi.org/10.1016/j.knosys.2021.107187
  • Makul, N. (2020). Cost-benefit analysis of the production of ready-mixed high-performance concrete made with recycled concrete aggregate: A case study in Thailand. Heliyon, 6(6), e04135. https://doi.org/10.1016/j.heliyon.2020.e04135
  • Martinez-Arguelles, G., Acosta, M. P., Dugarte, M., & Fuentes, L. (2019). Life cycle assessment of natural and recycled concrete aggregate production for road pavements applications in the northern region of Colombia: Case study. Transportation Research Record: Journal of the Transportation Research Board, 2673(5), 397–406. https://doi.org/10.1177/0361198119839955
  • Martinez-Arguelles, G., Dugarte, M., Fuentes, L., Sanchez, E., Rondon, H., Pacheco, C., Yepes, J., & Lagares, R. (2019). Characterization of recycled concrete aggregate as potential replacement of natural aggregate in asphalt pavement. IOP Conference Series: Materials Science and Engineering, 471(102045), 1–9. https://doi.org/10.1088/1757-899X/471/10/102045
  • Martinho, F., Picado-Santos, L., & Capitão, S. (2018). Influence of recycled concrete and steel slag aggregates on warm-mix asphalt properties. Construction and Building Materials, 185, 684–696. https://doi.org/10.1016/j.conbuildmat.2018.07.041
  • McAvoy, S., Grant, T., Smith, C., & Bontinck, P. (2021). Combining life cycle assessment and system dynamics to improve impact assessment: A systematic review. Journal of Cleaner Production, 315, Article 128060. https://doi.org/10.1016/j.jclepro.2021.128060
  • McNeil, K., & Kang, T. H. K. (2013). Recycled concrete aggregates: A review. International Journal of Concrete Structures and Materials, 7(1), 61–69. https://doi.org/10.1007/s40069-013-0032-5
  • Menares, C., Perez, P., Parraguez, S., & Fleming, Z. (2021). Forecasting PM2.5 levels in Santiago de Chile using deep learning neural networks. Urban Climate, 38, Article 100906. https://doi.org/10.1016/j.uclim.2021.100906
  • Miao, J., Wang, X., Bai, S., Xiang, Y., & Li, L. (2021). Distance-to-target weighting factor sets in LCA for China under 2030 vision. Journal of Cleaner Production, 314(128010), 1–9. https://doi.org/10.1016/j.jclepro.2021.128010
  • Mohammad, L. N., Hassan, M. M., Vallabhu, B., & Kabir, M. S. (2015). Louisiana’s experience with WMA technologies: Mechanistic, environmental, and economic analysis. Journal of Materials in Civil Engineering, 27(6), 04014185. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001143
  • Mohanraj, M., Jayaraj, S., & Muraleedharan, C. (2012). Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems – A review. Renewable and Sustainable Energy Reviews, 16(2), 1340–1358. https://doi.org/10.1016/j.rser.2011.10.015
  • Monu, K., Ransinchung, G., Pandey, G. S., & Singh, S. (2020). Performance evaluation of recycled-concrete aggregates and reclaimed-asphalt pavements for foam-mix asphalt mixes. Journal of Materials in Civil Engineering, 32(10), 04020295. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003356
  • Moreno-Ruiz, E., Valsasina, L., FitzGerald, D., Symeonidis, A., Turner, D., Müller, J., Bourgault, G., Vadenbo, C., Loannidou, D., & Wernet, G. (2020). Documentation of changes implemented in the ecoinvent database v3.7 & v3.7.1. Ecoinvent Association, 1–126.
  • Motter, J. S., Miranda, L. F. R., & Bernucci, L. L. B. (2015). Performance of hot mix asphalt concrete produced with coarse recycled concrete aggregate. Journal of Materials in Civil Engineering, 27(11), 04015030. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001284
  • Mousavi-Avval, S. H., Rafiee, S., Sharifi, M., Hosseinpour, S., Notarnicola, B., Tassielli, G., & Renzulli, P. A. (2017). Application of multi-objective genetic algorithms for optimization of energy, economics and environmental life cycle assessment in oilseed production. Journal of Cleaner Production, 140, 804–815. https://doi.org/10.1016/j.jclepro.2016.03.075
  • Mukkamala, M. C., & Hein, M. (2017). Variants of RMSProp and Adagrad with logarithmic regret bounds. In 34th International Conference on Machine Learning, Sydney, Australia, 70, 2545–2553.
  • Nagapurkar, P., & Smith, J. D. (2019). Techno-economic optimization and environmental life cycle assessment (LCA) of microgrids located in the US using genetic algorithm. Energy Conversion and Management, 181, 272–291. https://doi.org/10.1016/j.enconman.2018.11.072
  • Nair, V., & Hinton, G. (2010). Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), 807–814.
  • Nakhaei, M., Naderi, K., Nasrekani, A. A., & Timm, D. H. (2018). Moisture resistance study on PE-wax and EBS-wax modified warm mix asphalt using chemical and mechanical procedures. Construction and Building Materials, 189(x), 882–889. https://doi.org/10.1016/j.conbuildmat.2018.08.216
  • NREL. (2009). U.S. life cycle inventory database roadmap. National Renewable Energy Laboratory.
  • Ohemeng, E. A., & Ekolu, S. O. (2020). Comparative analysis on costs and benefits of producing natural and recycled concrete aggregates: A South African case study. Case Studies in Construction Materials, 13, e00450. https://doi.org/10.1016/j.cscm.2020.e00450
  • Ojha, V. K., Abraham, A., & Snášel, V. (2017). Metaheuristic design of feedforward neural networks: A review of two decades of research. Engineering Applications of Artificial Intelligence, 60, 97–116. https://doi.org/10.1016/j.engappai.2017.01.013
  • Ozbilen, A., Aydin, M., Dincer, I., & Rosen, M. A. (2013). Life cycle assessment of nuclear-based hydrogen production via a copper-chlorine cycle: A neural network approach. International Journal of Hydrogen Energy, 38(15), 6314–6322. https://doi.org/10.1016/j.ijhydene.2013.03.071
  • Pan, X., Zhang, Z., Zhang, H., Wen, Z., Ye, W., Yang, Y., Ma, J., & Zhao, X. (2021). A fast and robust mixture gases identification and concentration detection algorithm based on attention mechanism equipped recurrent neural network with double loss function. Sensors and Actuators B: Chemical, 342, Article 129982. https://doi.org/10.1016/j.snb.2021.129982
  • Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual lifelong learning with neural networks: A review. Neural Networks, 113, 54–71. https://doi.org/10.1016/j.neunet.2019.01.012
  • Park, C.-H., & Chang, J.-H. (2014). Shrinkage estimation-based source localization with minimum mean squared error criterion and minimum bias criterion. Digital Signal Processing, 29(1), 100–106. https://doi.org/10.1016/j.dsp.2014.02.009
  • Pasandín, A. R., & Pérez, I. (2015). Characterisation of recycled concrete aggregates when used in asphalt concrete: A technical literature review. European Journal of Environmental and Civil Engineering, 19(8), 917–930. https://doi.org/10.1080/19648189.2014.985850
  • Pasetto, M., Baliello, A., Giacomello, G., & Pasquini, E. (2017). Sustainable solutions for road pavements: A multi-scale characterization of warm mix asphalts containing steel slags. Journal of Cleaner Production, 166(x), 835–843. https://doi.org/10.1016/j.jclepro.2017.07.212
  • Patel, D., Hazan, H., Saunders, D. J., Siegelmann, H. T., & Kozma, R. (2019). Improved robustness of reinforcement learning policies upon conversion to spiking neuronal network platforms applied to Atari Breakout game. Neural Networks, 120, 108–115. https://doi.org/10.1016/j.neunet.2019.08.009
  • Penadés-Plà, V., García-Segura, T., Martí, J. V., & Yepes, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(685), 1–17. https://doi.org/10.3390/su10030685
  • Pishgar-Komleh, S. H., Akram, A., Keyhani, A., Sefeedpari, P., Shine, P., & Brandao, M. (2020). Integration of life cycle assessment, artificial neural networks, and metaheuristic optimization algorithms for optimization of tomato-based cropping systems in Iran. The International Journal of Life Cycle Assessment, 25(3), 620–632. https://doi.org/10.1007/s11367-019-01707-6
  • Polo-Mendoza, R., Martinez-Arguelles, G., & Peñabaena-Niebles, R. (2022). A multi-objective optimization based on genetic algorithms for the sustainable design of warm mix asphalt (WMA). International Journal of Pavement Engineering, 1–21. https://doi.org/10.1080/10298436.2022.2074417
  • Polo-Mendoza, R., Martinez-Arguelles, G., & Peñabaena-Niebles, R. (2023). Environmental optimization of warm mix asphalt (WMA) design with recycled concrete aggregates (RCA) inclusion through artificial intelligence (AI) techniques. Results in Engineering, 17(100984), 1–15. https://doi.org/10.1016/j.rineng.2023.100984
  • Polo-Mendoza, R., Martinez-Arguelles, G., Walubita, L. F., Moreno-Navarro, F., Giustozzi, F., Fuentes, L., & Navarro-Donado, T. (2022). Ultraviolet ageing of bituminous materials: A comprehensive literature review from 2011 to 2022. Construction and Building Materials, 350(128889), 1–32. https://doi.org/10.1016/j.conbuildmat.2022.128889
  • Polo-Mendoza, R., Peñabaena-Niebles, R., Giustozzi, F., & Martinez-Arguelles, G. (2022). Eco-friendly design of warm mix asphalt (WMA) with recycled concrete aggregate (RCA): A case study from a developing country. Construction and Building Materials, 326(126890), 1–16. https://doi.org/10.1016/j.conbuildmat.2022.126890
  • Pourreza, Z., Kabiri, M., Ranjbar, S., & Joda, F. (2020). Multi-objective optimization of life cycle assessment of integrated waste management based on genetic algorithms: A case study of Tehran. Journal of Cleaner Production, 247, Article 119153. https://doi.org/10.1016/j.jclepro.2019.119153
  • PRé Sustainability. (2020). Simapro database manual: Methods library. SimaPro Website, 1–98.
  • Radević, A., Dureković, A., Zakić, D., & Mladenović, G. (2017). Effects of recycled concrete aggregate on stiffness and rutting resistance of asphalt concrete. Construction and Building Materials, 136, 386–393. https://doi.org/10.1016/j.conbuildmat.2017.01.043
  • Rizk, H., Abbas, M., & Youssef, M. (2021). Device-independent cellular-based indoor location tracking using deep learning. Pervasive and Mobile Computing, 75, 101420. https://doi.org/10.1016/j.pmcj.2021.101420
  • Rodrigues, E. A., Gimenes, M., Bitencourt, L. A. G., & Manzoli, O. L. (2021). A concurrent multiscale approach for modeling recycled aggregate concrete. Construction and Building Materials, 267, Article 121040. https://doi.org/10.1016/j.conbuildmat.2020.121040
  • Rubio, M. C., Martínez, G., Baena, L., & Moreno, F. (2012). Warm mix asphalt: An overview. Journal of Cleaner Production, 24, 76–84. https://doi.org/10.1016/j.jclepro.2011.11.053
  • Ruescas Nicolau, A. V., Parrilla Bernabé, E., Medina Ripoll, E., Garrido Jaén, D., & Alemany Mut, S. (2020). Database generation for markerless tracking based on deep learning networks. Gait & Posture, 81, 308–309. https://doi.org/10.1016/j.gaitpost.2020.08.050
  • Sainath, T. N., Kingsbury, B., Saon, G., Soltau, H., Mohamed, A., Dahl, G., & Ramabhadran, B. (2015). Deep convolutional neural networks for large-scale speech tasks. Neural Networks, 64, 39–48. https://doi.org/10.1016/j.neunet.2014.08.005
  • Sanchez-Cotte, E., Fuentes, L., Martinez-Arguelles, G., Rondon, H., Walubita, L., & Cantero, J. (2020). Influence of recycled concrete aggregates from different sources in hot mix asphalt design. Construction and Building Materials, 259(120427), 1–14. https://doi.org/10.1016/j.conbuildmat.2020.120427
  • Santos, J., Bressi, S., Cerezo, V., Lo Presti, D., & Dauvergne, M. (2018). Life cycle assessment of low temperature asphalt mixtures for road pavement surfaces: A comparative analysis. Resources, Conservation and Recycling, 138, 283–297. https://doi.org/10.1016/j.resconrec.2018.07.012
  • Schaubroeck, T., Schaubroeck, S., Heijungs, R., Zamagni, A., Brandao, M., & Benetto, E. (2021). Attributional & consequential life cycle assessment: Definitions, conceptual characteristics and modelling restrictions. Sustainability, 13(13), 7386. https://doi.org/10.3390/su13137386
  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
  • Schrijvers, D. L., Loubet, P., & Sonnemann, G. (2016). Critical review of guidelines against a systematic framework with regard to consistency on allocation procedures for recycling in LCA. The International Journal of Life Cycle Assessment, 21(7), 994–1008. https://doi.org/10.1007/s11367-016-1069-x
  • Sengoz, B., & Oylumluoglu, J. (2013). Utilization of recycled asphalt concrete with different warm mix asphalt additives prepared with different penetration grades bitumen. Construction and Building Materials, 45, 173–183. https://doi.org/10.1016/j.conbuildmat.2013.03.097
  • Silva, R. V., De Brito, J., & Dhir, R. K. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials, 65, 201–217. https://doi.org/10.1016/j.conbuildmat.2014.04.117
  • Smetana, S., Seebold, C., & Heinz, V. (2018). Neural network, blockchain, and modular complex system: The evolution of cyber-physical systems for material flow analysis and life cycle assessment. Resources, Conservation and Recycling, 133, 229–230. https://doi.org/10.1016/j.resconrec.2018.02.020
  • Soo, K. W., & Rottman, B. M. (2020). Distinguishing causation and correlation: Causal learning from time-series graphs with trends. Cognition, 195(104079), 1–6. https://doi.org/10.1016/j.cognition.2019.104079
  • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple Way to prevent neural networks from overfittin. Journal of Machine Learning Research, 15(56), 1929–1958.
  • Steger, S., Mair, V., Kofler, C., Pittore, M., Zebisch, M., & Schneiderbauer, S. (2021). Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling – Benefits of exploring landslide data collection effects. Science of the Total Environment, 776(145935), 1–16. https://doi.org/10.1016/j.scitotenv.2021.145935
  • Sukhija, M., & Saboo, N. (2021). A comprehensive review of warm mix asphalt mixtures-laboratory to field. Construction and Building Materials, 274, Article 121781. https://doi.org/10.1016/j.conbuildmat.2020.121781
  • Tahmoorian, F., & Samali, B. (2018). Laboratory investigations on the utilization of RCA in asphalt mixtures. International Journal of Pavement Research and Technology, 11(6), 627–638. https://doi.org/10.1016/j.ijprt.2018.05.002
  • Tam, V. W. Y., Butera, A., Le, K. N., Silva, L. C. F. D., & Evangelista, A. C. J. (2022). A prediction model for compressive strength of CO2 concrete using regression analysis and artificial neural networks. Construction and Building Materials, 324, Article 126689. https://doi.org/10.1016/j.conbuildmat.2022.126689
  • Tam, V. W. Y., Soomro, M., & Evangelista, A. C. J. (2021). Quality improvement of recycled concrete aggregate by removal of residual mortar: A comprehensive review of approaches adopted. Construction and Building Materials, 288, Article 123066. https://doi.org/10.1016/j.conbuildmat.2021.123066
  • Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., & Maida, A. (2019). Deep learning in spiking neural networks. Neural Networks, 111, 47–63. https://doi.org/10.1016/j.neunet.2018.12.002
  • Turbay, E., Martinez-Arguelles, G., Navarro-Donado, T., Sanchez-Cotte, E., Polo-Mendoza, R., & Covilla-Valera, E. (2022). Rheological behaviour of WMA-modified asphalt binders with crumb rubber. Polymers, 14(4148), 1–22. https://doi.org/10.3390/polym14194148
  • Vasishta, T., Mehany, M. H., & Killingsworth, J. (2023). Comparative life cycle assesment (LCA) and life cycle cost analysis (LCCA) of precast and cast-in-place buildings in United States. Journal of Building Engineering, 67(105921), 1–16. https://doi.org/10.1016/j.jobe.2023.105921
  • Vega-Araujo, D., Martinez-Arguelles, G., & Santos, J. (2019). Life cycle assessment of warm Mix asphalt with recycled concrete aggregate. IOP Conference Series: Materials Science and Engineering, 603(052016), 1–9. https://doi.org/10.1088/1757-899X/603/5/052016
  • Vega-Araujo, D., Martinez-Arguelles, G., & Santos, J. (2020). Comparative life cycle assessment of warm mix asphalt with recycled concrete aggregates: A Colombian case study. Procedia CIRP, 90, 285–290. https://doi.org/10.1016/j.procir.2020.02.126
  • Vega-Araujo, D., Santos, J., & Martinez-Arguelles, G. (2022). Environmental performance evaluation of warm mix asphalt with recycled concrete aggregate for road pavements. International Journal of Pavement Engineering, 1–14. https://doi.org/10.1080/10298436.2022.2064999
  • Vidal, R., Moliner, E., Martínez, G., & Rubio, M. C. (2013). Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resources, Conservation and Recycling, 74, 101–114. https://doi.org/10.1016/j.resconrec.2013.02.018
  • Vidergar, P., Perc, M., & Lukman, R. K. (2021). A survey of the life cycle assessment of food supply chains. Journal of Cleaner Production, 286, 125506. https://doi.org/10.1016/j.jclepro.2020.125506
  • Vigil, M., Marey-Pérez, M. F., Martinez Huerta, G., & Álvarez Cabal, V. (2015). Is phytoremediation without biomass valorization sustainable? Comparative LCA of landfilling vs. Anaerobic co-digestion. Science of the Total Environment, 505, 844–850. https://doi.org/10.1016/j.scitotenv.2014.10.047
  • Walbech, M., Krogh, P., Eva, M., & Lading, T. (2021). Comparative life cycle assessment of four buildings in Greenland. Building and Environment, 204, 108130. https://doi.org/10.1016/j.buildenv.2021.108130
  • Walubita, L. F., Martinez-Arguelles, G., Polo-Mendoza, R., Ick-Lee, S., & Fuentes, L. (2022). Comparative environmental assessment of rigid, flexible, and perpetual pavements: A case study of Texas. Sustainability, 14(9983), 9983–9922. https://doi.org/10.3390/su14169983
  • Wang, C., Hao, P., Ruan, F., Zhang, X., & Adhikari, S. (2013). Determination of the production temperature of warm mix asphalt by workability test. Construction and Building Materials, 48, 1165–1170. https://doi.org/10.1016/j.conbuildmat.2013.07.097
  • Wang, H., Liu, X., Apostolidis, P., & Scarpas, T. (2018). Review of warm mix rubberized asphalt concrete: Towards a sustainable paving technology. Journal of Cleaner Production, 177, 302–314. https://doi.org/10.1016/j.jclepro.2017.12.245
  • Wang, J., Yang, Y., Mao, T., Sui, J., & Jin, H. (2015). Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system. Applied Energy, 146, 38–52. https://doi.org/10.1016/j.apenergy.2015.02.056
  • Weidema, B. P., Bauer, C., Hischier, R., Mutel, C., Nemecek, T., Reinhard, J., Vadenbo, C. O., & Wernet, G. (2013). Overview and methodology: Data quality guideline for the ecoinvent database version 3. Ecoinvent Association, 1–169.
  • Wu, S., Wen, H., Zhang, W., Shen, S., Mohammad, L. N., Faheem, A., & Muhunthan, B. (2019). Field performance of top-down fatigue cracking for warm mix asphalt pavements. International Journal of Pavement Engineering, 20(1), 33–43. https://doi.org/10.1080/10298436.2016.1248204
  • Xie, Z., Trail, N., Taylor, A., Julian, G., West, R., & Welch, J. (2017). Evaluation of foamed warm mix asphalt with reclaimed asphalt pavement: Field and laboratory experiments. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 86, 449–479. https://doi.org/10.1080/14680629.2017.1389077
  • Xu, D., Zhang, S., Zhang, H., & Mandic, D. P. (2021a). Convergence of the RMSProp deep learning method with penalty for nonconvex optimization. Neural Networks, 139, 17–23. https://doi.org/10.1016/j.neunet.2021.02.011
  • Xu, K., Tartakovsky, A. M., Burghardt, J., & Darve, E. (2021b). Learning viscoelasticity models from indirect data using deep neural networks. Computer Methods in Applied Mechanics and Engineering, 387, Article 114124. https://doi.org/10.1016/j.cma.2021.114124
  • Xu, S., Xiao, F., Amirkhanian, S., & Singh, D. (2017). Moisture characteristics of mixtures with warm mix asphalt technologies – A review. Construction and Building Materials, 142, 148–161. https://doi.org/10.1016/j.conbuildmat.2017.03.069
  • Xu, X., Luo, Y., Sreeram, A., Wu, Q., Chen, G., Cheng, S., Chen, Z., & Chen, X. (2022). Potential use of recycled concrete aggregate (RCA) for sustainable asphalt pavements of the future: A state-of-the-art review. Journal of Cleaner Production, 344(130893), 1–13. https://doi.org/10.1016/j.jclepro.2022.130893
  • Yang, C. C., & Yang, S. F. (2013). Optimal variable sample size and sampling interval ‘mean squared error’ chart. The Service Industries Journal, 33(6), 652–665. https://doi.org/10.1080/02642069.2011.614345
  • Yousefi, A., Behnood, A., Nowruzi, A., & Hghshenas, H. (2021). Performance evaluation of asphalt mixtures containing warm mix asphalt (WMA) additives and reclaimed asphalt pavement (RAP). Construction and Building Materials, 268, 121200. https://doi.org/10.1016/j.conbuildmat.2020.121200
  • Yu, B., Gu, X., Ni, F., & Guo, R. (2015). Multi-objective optimization for asphalt pavement maintenance plans at project level: Integrating performance, cost and environment. Transportation Research Part D: Transport and Environment, 41, 64–74. https://doi.org/10.1016/j.trd.2015.09.016
  • Yu, R., Wang, Y., Zou, Z., & Wang, L. (2020). Convolutional neural networks with refined loss functions for the real-time crash risk analysis. Transportation Research Part C: Emerging Technologies, 119, Article 102740. https://doi.org/10.1016/j.trc.2020.102740
  • Zaumanis, M. (2014). Chapter 10: Warm mix asphalt. In Climate change, energy, sustainability and pavements (pp. 309–334). Springer. https://doi.org/10.1007/978-3-662-44719-2_10
  • Zhang, L., & Suganthan, P. N. (2016). A comprehensive evaluation of random vector functional link networks. Information Sciences, 367-368, 1094–1105. https://doi.org/10.1016/j.ins.2015.09.025
  • Zhang, X., Lu, W., Pan, Y., Wu, H., Wang, R., & Yu, R. (2021). Empirical study on tangent loss function for classification with deep neural networks. Computers & Electrical Engineering, 90, 107000. https://doi.org/10.1016/j.compeleceng.2021.107000
  • Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., & Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115–125. https://doi.org/10.1016/j.conbuildmat.2019.03.078

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.