125
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The study of the feasibility and manufacture of slurry seal surface treatment with steel slag industry wastes: use of basic oxygen furnace (BOF) slag filler as raw material replacement

ORCID Icon, , ORCID Icon &
Pages 967-987 | Received 01 Sep 2022, Accepted 22 Jun 2023, Published online: 24 Jul 2023

References

  • Ahmedzade, P., & Sengoz, B. (2009). Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. Journal of Hazardous Materials, 165(1–3), 300–305. https://doi.org/10.1016/j.jhazmat.2008.09.105
  • Airey, G. D., Collop, A. C., & Thom, N. H. (2004). Mechanical performance of asphalt mixtures incorporating slag and glass secondary aggregates. In Proceedings of the 8th conference on asphalt pavements for Southern Africa (CAPSA’04), Sun City, South Africa (Vol. 12, pp. 16). Nothingham Centre for Pavement Engineering.
  • Arabani, M., & Azarhoosh, A. (2012). The effect of recycled concrete aggregate and steel slag on the dynamic properties of asphalt mixtures. Construction and Building Materials, 35, 1–7. https://doi.org/10.1016/j.conbuildmat.2012.02.036
  • Arabani, M., Tahami, S. A., & Taghipoor, M. (2017). Laboratory investigation of hot mix asphalt containing waste materials. Road Materials and Pavement Design, 18(3), 713–729. https://doi.org/10.1080/14680629.2016.1189349
  • Asi, I. M. (2007). Evaluating skid resistance of different asphalt concrete mixes. Building and Environment, 42(1), 325–329. https://doi.org/10.1016/j.buildenv.2005.08.020
  • Aziz, M. M. A., Hainin, M. R., Yaacob, H., Ali, Z., Chang, F. L., & Adnan, A. M. (2014). Characterisation and utilisation of steel slag for the construction of roads and highways. Materials Research Innovations, 18(sup6), S6-255–s6-259. https://doi.org/10.1179/1432891714Z.000000000967
  • Barišić, I., Netinger Grubeša, I., & Hackenberger Kutuzović, B. (2017). Multidisciplinary approach to the environmental impact of steel slag reused in road construction. Road Materials and Pavement Design, 18(4), 897–912. https://doi.org/10.1080/14680629.2016.1197143
  • Chandru, P., Karthikeyan, J., Sahu, A. K., Sharma, K., & Natarajan, C. (2021). Some durability characteristics of ternary blended SCC containing crushed stone and induction furnace slag as coarse aggregate. Construction and Building Materials, 270, 121483. https://doi.org/10.1016/j.conbuildmat.2020.121483
  • Chen, S.-H., Lin, D.-F., Luo, H.-L., & Lin, Z.-Y. (2017). Application of reclaimed basic oxygen furnace slag asphalt pavement in road base aggregate. Construction and Building Materials, 157, 647–653. https://doi.org/10.1016/j.conbuildmat.2017.09.136
  • Chen, Z., Gong, Z., Jiao, Y., Wang, Y., Shi, K., & Wu, J. (2020). Moisture stability improvement of asphalt mixture considering the surface characteristics of steel slag coarse aggregate. Construction and Building Materials, 251, 118987. https://doi.org/10.1016/j.conbuildmat.2020.118987
  • Choudhary, J., Kumar, B., & Gupta, A. (2020). Utilization of solid waste materials as alternative fillers in asphalt mixes: A review. Construction and Building Materials, 234, 117271. https://doi.org/10.1016/j.conbuildmat.2019.117271
  • Choudhary, J., Kumar, B., & Gupta, A. (2021). Evaluation of engineering: Economic and environmental suitability of waste filler incorporated asphalt mixes and pavements. Road Materials and Pavement Design, 22(sup1), S624–S640. https://doi.org/10.1080/14680629.2021.1905698
  • Dulaimi, A., Shanbara, H. K., & Al-Rifaie, A. (2020). The mechanical evaluation of cold asphalt emulsion mixtures using a new cementitious material comprising ground-granulated blast-furnace slag and a calcium carbide residue. Construction and Building Materials, 250, 118808. https://doi.org/10.1016/j.conbuildmat.2020.118808
  • Farooq, M. A., Sato, Y., Ayano, T., & Niitani, K. (2017). Experimental and numerical investigation of static and fatigue behavior of mortar with blast furnace slag sand as fine aggregates in air and water. Construction and Building Materials, 143, 429–443. https://doi.org/10.1016/j.conbuildmat.2017.03.147
  • Gransberg, D. D., Board, T. R., & Program, N. C. H. R. P. S. (2010). NCHRP synthesis 411. Microsurfacing. https://doi.org/10.17226/14464
  • Guo, Y., Xie, J., Zheng, W., & Li, J. (2018). Effects of steel slag as fine aggregate on static and impact behaviours of concrete. Construction and Building Materials, 192, 194–201. https://doi.org/10.1016/j.conbuildmat.2018.10.129
  • Hainin, M. R., Rusbintardjo, G., Hameed, M. A. S., Hassan, N. A., & Yusoff, N. I. M. (2014). Utilisation of steel slag as an aggregate replacement in porous asphalt mixtures. Jurnal Teknologi (Sciences and Engineering), 69(1), 67–73. https://doi.org/10.11113/jt.v69.2529
  • ISSA. (2017a). Laboratory test method for Wet track abrasion of slurry surfacing systems. Technical Bulletin. International slurry surfacing association.
  • ISSA. (2017b). Test method for measurement of excess asphalt in bituminous mixtures by Use of a loaded wheel tester and sand adhesion. Technical Bulletin. International slurry surfacing association.
  • ISSA. (2017c). Test method for measurement of stability and resistance to compaction, vertical and lateral displacement of multilayered fine aggregate cold mixes. Technical Bulletin. International Slurry Surfacing Association.
  • ISSA. (2017d). Test method to classify emulsified asphalt/aggregate mixture systems by modified cohesion tester measurement of set and cure characteristics. Technical Bulletin. International Slurry Surfacing Association.
  • ISSA. (2017e). Trial mix procedure for slurry seal design. Technical Bulletin. International Slurry Surfacing Association.
  • Izadi, A., Zalnezhad, M., Bozorgi Makerani, P., & Zalnezhad, H. (2020). Mix design and performance evaluation of coloured slurry seal mixture containing natural iron oxide red pigments. Road Materials and Pavement Design, 1–18. https://doi.org/10.1080/14680629.2020.1860803
  • Johannes, P. T. (2014). Development of an improved mixture design framework for slurry seals and micro-surfacing treatments. The University of Wisconsin-Madison.
  • Kavussi, A., & Qazizadeh, M. J. (2014). Fatigue characterization of asphalt mixes containing electric arc furnace (EAF) steel slag subjected to long term aging. Construction and Building Materials, 72, 158–166. https://doi.org/10.1016/j.conbuildmat.2014.08.052
  • Keymanesh, M. R., Ziari, H., Zalnezhad, H., & Zalnezhad, M. (2021a). Effects of lead time and manufacturing methods applied for polymer-modified bitumen emulsion (PMBE) on microsurfacing performance. Road Materials and Pavement Design, 1–22. https://doi.org/10.1080/14680629.2021.1963818
  • Keymanesh, M. R., Ziari, H., Zalnezhad, H., & Zalnezhad, M. (2021b). Mix design and performance evaluation of microsurfacing containing electric arc furnace (EAF) steel slag filler. Construction and Building Materials, 269, 121336. https://doi.org/10.1016/j.conbuildmat.2020.121336
  • Mistry, R., Karmakar, S., & Kumar Roy, T. (2019). Experimental evaluation of rice husk ash and fly ash as alternative fillers in hot-mix asphalt. Road Materials and Pavement Design, 20(4), 979–990. https://doi.org/10.1080/14680629.2017.1422791
  • Nasir, M., Johari, M. A. M., Maslehuddin, M., Yusuf, M. O., & Al-Harthi, M. A. (2020). Influence of heat curing period and temperature on the strength of silico-manganese fume-blast furnace slag-based alkali-activated mortar. Construction and Building Materials, 251, 118961. https://doi.org/10.1016/j.conbuildmat.2020.118961
  • Pattanaik, M. L., Choudhary, R., Kumar, B., & Kumar, A. (2021). Mechanical properties of open graded friction course mixtures with different contents of electric arc furnace steel slag as an alternative aggregate from steel industries. Road Materials and Pavement Design, 22(2), 268–292. https://doi.org/10.1080/14680629.2019.1620120
  • Puligilla, S., & Mondal, P. (2013). Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cement and Concrete Research, 43, 70–80. https://doi.org/10.1016/j.cemconres.2012.10.004
  • Robinson, G. R., Menzie, W. D., & Hyun, H. (2004). Recycling of construction debris as aggregate in the Mid-atlantic region, USA. Resources, Conservation and Recycling, 42(3), 275–294. https://doi.org/10.1016/j.resconrec.2004.04.006
  • Ruíz-Ibarra, J. F., Rondón-Quintana, H. A., & Chaves-Pabón, S. B. (2020). Behavior of a warm mix asphalt containing a blast furnace slag. International Journal of Civil Engineering, 18(3), 325–334. https://doi.org/10.1007/s40999-019-00475-6
  • Shafabakhsh, G., & Ahmadi, S. (2019). Investigating the effects of steel slag and different tack coats on the shear strength of composite pavement layers. Quarterly Journal of Transportation Engineering, 11(2), 475–499. https://doi.org/10.22119/jte.2019.69459
  • Shen, D.-H., Wu, C.-M., & Du, J.-C. (2009). Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Construction and Building Materials, 23(1), 453–461. https://doi.org/10.1016/j.conbuildmat.2007.11.001
  • Simone, A., Mazzotta, F., Eskandarsefat, S., Sangiorgi, C., Vignali, V., Lantieri, C., & Dondi, G. (2019). Experimental application of waste glass powder filler in recycled dense-graded asphalt mixtures. Road Materials and Pavement Design, 20(3), 592–607. https://doi.org/10.1080/14680629.2017.1407818
  • Skaf, M., Manso, J. M., Aragón, Á, Fuente-Alonso, J. A., & Ortega-López, V. (2017). EAF slag in asphalt mixes: A brief review of its possible re-use. Resources: Conservation and Recycling, 120, 176–185. https://doi.org/10.1016/j.resconrec.2016.12.009
  • Song, W., Zhu, Z., Pu, S., Wan, Y., Huo, W., Song, S., Zhang, J., Yao, K., & Hu, L. (2020). Efficient use of steel slag in alkali-activated fly ash-steel slag-ground granulated blast furnace slag ternary blends. Construction and Building Materials, 259, 119814. https://doi.org/10.1016/j.conbuildmat.2020.119814
  • Wang, A., Shen, S., Li, X., & Song, B. (2019). Micro-surfacing mixtures with reclaimed asphalt pavement: Mix design and performance evaluation. Construction and Building Materials, 201, 303–313. https://doi.org/10.1016/j.conbuildmat.2018.12.164
  • Yang, H., Xia, J., Thompson, J. R., & Flower, R. J. (2017). Urban construction and demolition waste and landfill failure in Shenzhen, China. Waste Management, 63, 393–396. https://doi.org/10.1016/j.wasman.2017.01.026
  • Zalnezhad, M., & Hesami, E. (2020). Effect of steel slag aggregate and bitumen emulsion types on the performance of microsurfacing mixture. Journal of Traffic and Transportation Engineering (English Edition), 7(2), 215–226. https://doi.org/10.1016/j.jtte.2018.12.005
  • Zhang, Z., Li, L., Ma, X., & Wang, H. (2016). Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement. Construction and Building Materials, 113, 237–245. https://doi.org/10.1016/j.conbuildmat.2016.03.043

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.